Formulate a concentrated highly branched poly(β-amino ester)/DNA polyplex - one step closer to application in lung cystic fibrosis disease.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Bei Qiu, Yinghao Li, Zhonglei He, Zishan Li, Sébastien Terreau, Xianqing Wang, Jing Lyu, Wenxin Wang, Irene Lara-Sáez
{"title":"Formulate a concentrated highly branched poly(β-amino ester)/DNA polyplex - one step closer to application in lung cystic fibrosis disease.","authors":"Bei Qiu, Yinghao Li, Zhonglei He, Zishan Li, Sébastien Terreau, Xianqing Wang, Jing Lyu, Wenxin Wang, Irene Lara-Sáez","doi":"10.1080/03639045.2024.2448271","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Highly branched poly(β-amino ester) (HPAEs)-based gene therapy holds promise for treating lung cystic fibrosis (CF). However, the translation of HPAEs/DNA nanoparticles into clinical applications poses a significant challenge due to the requirement for high concentrations of the formulation.</p><p><strong>Methods: </strong>In this work, a straightforward and scalable concentration method was developed for concentrating HPAEs/DNA polyplexes. A series of different buffers with various pH values and ionic components were initially tested to develop the optimized HPAEs/DNA polyplex formulation. Subsequently, the optimized HPAEs/DNA polyplex formulation was concentrated through lyophilization and ultrafiltration.</p><p><strong>Results: </strong>The ultrafiltration outperformed the lyophilization in concentration capacity, showing a 24-fold increase in the concentrated formulation compared to the original non-concentrated formulation. The concentration does not disturb the transfection efficiency in lung CF epithelial cells, indicating its potential for lung delivery applications. Moreover, the concentrated HPAEs/DNA polyplex successfully restored the production of cystic fibrosis transmembrane conductance regulator (CFTR) protein in primary lung CF epithelial cells, surpassing the performance of the non-concentrated common gene transfection reagents such as Lipofectamine 3000 and Xfect.</p><p><strong>Conclusions: </strong>The concentrated HPAEs/DNA formulation represents a promising step forward for preclinical testing (e.g., <i>in vivo</i> evaluation), with further research needed to confirm its potential for clinical use.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-15"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2448271","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Highly branched poly(β-amino ester) (HPAEs)-based gene therapy holds promise for treating lung cystic fibrosis (CF). However, the translation of HPAEs/DNA nanoparticles into clinical applications poses a significant challenge due to the requirement for high concentrations of the formulation.

Methods: In this work, a straightforward and scalable concentration method was developed for concentrating HPAEs/DNA polyplexes. A series of different buffers with various pH values and ionic components were initially tested to develop the optimized HPAEs/DNA polyplex formulation. Subsequently, the optimized HPAEs/DNA polyplex formulation was concentrated through lyophilization and ultrafiltration.

Results: The ultrafiltration outperformed the lyophilization in concentration capacity, showing a 24-fold increase in the concentrated formulation compared to the original non-concentrated formulation. The concentration does not disturb the transfection efficiency in lung CF epithelial cells, indicating its potential for lung delivery applications. Moreover, the concentrated HPAEs/DNA polyplex successfully restored the production of cystic fibrosis transmembrane conductance regulator (CFTR) protein in primary lung CF epithelial cells, surpassing the performance of the non-concentrated common gene transfection reagents such as Lipofectamine 3000 and Xfect.

Conclusions: The concentrated HPAEs/DNA formulation represents a promising step forward for preclinical testing (e.g., in vivo evaluation), with further research needed to confirm its potential for clinical use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信