Modeling inactivation of non-proteolytic Clostridium botulinum type B spores in a plant-based fish alternative.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1509681
Chrysanthi Champidou, Mariem Ellouze, Nabila Haddad, Jeanne-Marie Membré
{"title":"Modeling inactivation of non-proteolytic <i>Clostridium botulinum</i> type B spores in a plant-based fish alternative.","authors":"Chrysanthi Champidou, Mariem Ellouze, Nabila Haddad, Jeanne-Marie Membré","doi":"10.3389/fmicb.2024.1509681","DOIUrl":null,"url":null,"abstract":"<p><p>Our study aims to assess the thermal inactivation of non-proteolytic type B <i>Clostridium botulinum</i> spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D<sub>80</sub> value was estimated to be 0.7-0.8 min. Then, inactivation was studied in a plant-based fish alternative using \"thermal cells equipment.\" Inactivation kinetics were obtained at four temperatures: 78, 81, 84 and 85°C, in duplicates. A secondary model describing log<sub>10</sub>D values versus temperatures was fitted to the dataset. The model parameters Z<sub>T</sub> and log<sub>10</sub>D<sub>ref</sub> (log<sub>10</sub>D at T<sub>ref</sub> 82°C) were estimated to be 8.02 ± 0.46°C and 0.32 ± 0.02, respectively. Model validation was done first with additional data collected at three different temperatures (79.1, 82.5, 87.5°C) and second with literature data. The time required to deliver 6 log reduction in the plant-based food matrix was predicted at temperatures within the range 80-90°C. The recommended processing for vacuum-packed chilled products, 90°C for 10 min, was evaluated. We demonstrated that the recommended processing is approximately five times more than the time required for 6 log reduction of non-proteolytic <i>C. botulinum</i> in the plant-based fish alternative, indicating a substantial margin of safety. Our findings highlight the importance of conducting product-specific studies for the evaluation of thermal processing and the potential of process optimization for certain product categories.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1509681"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11690303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1509681","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our study aims to assess the thermal inactivation of non-proteolytic type B Clostridium botulinum spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D80 value was estimated to be 0.7-0.8 min. Then, inactivation was studied in a plant-based fish alternative using "thermal cells equipment." Inactivation kinetics were obtained at four temperatures: 78, 81, 84 and 85°C, in duplicates. A secondary model describing log10D values versus temperatures was fitted to the dataset. The model parameters ZT and log10Dref (log10D at Tref 82°C) were estimated to be 8.02 ± 0.46°C and 0.32 ± 0.02, respectively. Model validation was done first with additional data collected at three different temperatures (79.1, 82.5, 87.5°C) and second with literature data. The time required to deliver 6 log reduction in the plant-based food matrix was predicted at temperatures within the range 80-90°C. The recommended processing for vacuum-packed chilled products, 90°C for 10 min, was evaluated. We demonstrated that the recommended processing is approximately five times more than the time required for 6 log reduction of non-proteolytic C. botulinum in the plant-based fish alternative, indicating a substantial margin of safety. Our findings highlight the importance of conducting product-specific studies for the evaluation of thermal processing and the potential of process optimization for certain product categories.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信