Lattice Light-Sheet Microscopy Allows for Super-Resolution Imaging of Receptors in Leaf Tissue.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Traeger Jeremiah, Yang Mengran, Stacey Gary, Orr Galya, Hu Dehong
{"title":"Lattice Light-Sheet Microscopy Allows for Super-Resolution Imaging of Receptors in Leaf Tissue.","authors":"Traeger Jeremiah, Yang Mengran, Stacey Gary, Orr Galya, Hu Dehong","doi":"10.1016/j.bpj.2024.12.028","DOIUrl":null,"url":null,"abstract":"<p><p>Plant leaf tissues are difficult to image via fluorescent microscopy due to the presence of chlorophyll and other pigments, which provide large background fluorescence. The lattice light-sheet microscopy offers the advantage of using Bessel beams to illuminate a thin focal region of interest for microscopy, allowing for the excitation of fluorescent molecules within this region without surrounding chlorophyll-like objects outside of the region of interest. Here, we apply STORM super-resolution techniques to observe Receptor-Like Kinases in Arabidopsis thaliana leaf cells. By applying this technique with the lattice light-sheet microscopy, we can localize immune response proteins in sub-100 nm length scales and reconstruct three-dimensional locations of proteins within individual leaf cells. Using this technique, we observed the effect of the ATP and flg22 elicitors, where we observed a significant degree of internalization of cognate receptors P2K1 and FLS2. We were also able to similarly observe differences in colocalization due to stimulation with these elicitors, where we observe proteins on the membrane becoming less colocalized as a result of stimulation, suggesting an immune response mechanism involving receptor internalization via distinct pathways. These data show the lattice light-sheet microscopy's capabilities for imaging tissue with problematic background fluorescence that otherwise makes super-resolution fluorescence microscopy difficult.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Plant leaf tissues are difficult to image via fluorescent microscopy due to the presence of chlorophyll and other pigments, which provide large background fluorescence. The lattice light-sheet microscopy offers the advantage of using Bessel beams to illuminate a thin focal region of interest for microscopy, allowing for the excitation of fluorescent molecules within this region without surrounding chlorophyll-like objects outside of the region of interest. Here, we apply STORM super-resolution techniques to observe Receptor-Like Kinases in Arabidopsis thaliana leaf cells. By applying this technique with the lattice light-sheet microscopy, we can localize immune response proteins in sub-100 nm length scales and reconstruct three-dimensional locations of proteins within individual leaf cells. Using this technique, we observed the effect of the ATP and flg22 elicitors, where we observed a significant degree of internalization of cognate receptors P2K1 and FLS2. We were also able to similarly observe differences in colocalization due to stimulation with these elicitors, where we observe proteins on the membrane becoming less colocalized as a result of stimulation, suggesting an immune response mechanism involving receptor internalization via distinct pathways. These data show the lattice light-sheet microscopy's capabilities for imaging tissue with problematic background fluorescence that otherwise makes super-resolution fluorescence microscopy difficult.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信