Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation.
{"title":"Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation.","authors":"Qi Lin, Yu Zhang, Yina Zeng, Yongchao Zha, Wei Xue, Siming Yu","doi":"10.1016/j.biomaterials.2024.123045","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO<sup>-</sup>) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO<sup>-</sup> in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO<sup>-</sup> boost properties was designed for melanoma treatment. Briefly, NIR-II molecule IR1061, NO donor BNN6 and β-lapachone (Lapa) were firstly encapsulated in the heat-responsive palmitoyl phosphatidylcholine/cholesterol liposome, followed by fusion with B16F10 cell membrane (CM) to obtain biomimetic CM-Lip@(IR/BNN6/Lapa). The hybrid membrane-based nanodrug displayed excellent biocompatibility and melanoma-targeting efficiency. Upon 1064 nm laser irradiation, the mild photothermal effect of CM-Lip@(IR/BNN6/Lapa) firstly triggered the release of NO and Lapa, which subsequently catalyzed the quinone oxidoreductase 1 (NQO1) overexpressed in tumors to produce O<sub>2</sub><sup>•-</sup>, finally caused intraturmal ONOO<sup>-</sup> boost via cascade reaction. The boosted ONOO<sup>-</sup> could effectively inhibit melanoma by ways of triggering mitochondrion-mediated apoptotic pathway, upregulating 3-nitrotyrosine expression, inducing DNA damage and inhibiting DNA repair enzyme expression of poly (ADP-ribose) polymerase 1 (PARP-1). Moreover, ONOO<sup>-</sup> displayed excellent immunoactivation and immunomodulation activities by effectively inducing immunogenic tumor cell death, promoting dendritic cells maturation, increasing cytotoxic T lymphocytes expression and repolarizing M1-phenotype macrophages.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"123045"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123045","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO-) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO- in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO- boost properties was designed for melanoma treatment. Briefly, NIR-II molecule IR1061, NO donor BNN6 and β-lapachone (Lapa) were firstly encapsulated in the heat-responsive palmitoyl phosphatidylcholine/cholesterol liposome, followed by fusion with B16F10 cell membrane (CM) to obtain biomimetic CM-Lip@(IR/BNN6/Lapa). The hybrid membrane-based nanodrug displayed excellent biocompatibility and melanoma-targeting efficiency. Upon 1064 nm laser irradiation, the mild photothermal effect of CM-Lip@(IR/BNN6/Lapa) firstly triggered the release of NO and Lapa, which subsequently catalyzed the quinone oxidoreductase 1 (NQO1) overexpressed in tumors to produce O2•-, finally caused intraturmal ONOO- boost via cascade reaction. The boosted ONOO- could effectively inhibit melanoma by ways of triggering mitochondrion-mediated apoptotic pathway, upregulating 3-nitrotyrosine expression, inducing DNA damage and inhibiting DNA repair enzyme expression of poly (ADP-ribose) polymerase 1 (PARP-1). Moreover, ONOO- displayed excellent immunoactivation and immunomodulation activities by effectively inducing immunogenic tumor cell death, promoting dendritic cells maturation, increasing cytotoxic T lymphocytes expression and repolarizing M1-phenotype macrophages.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.