{"title":"Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration.","authors":"Yongkang Yang, Ziheng Xu, Songlin He, Chao Wang, Runmeng Li, Ruiyang Zhang, Jianwei Li, Zhen Yang, Hao Li, Shuyun Liu, Quanyi Guo","doi":"10.1016/j.biomaterials.2024.123066","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes. Next, we demonstrate a rationally designed layer-by-layer single-cell encapsulation system which can mimic PCM mechanical responses and enhance MSC chondrogenesis via reestablished the mechanical coupling of PCM-like primitive matrix and chondrocytes. This successfully simulates the temporal and spatial characteristics of collagen secretion. Through investigation of the micromechanical environment of the cells and full-atom simulation analysis of TRPV4, we determine the specific mechanisms by which cellular mechanical forces near the cell are converted into biological signals. The TRPV4-YAP/TAZ-PI3K-Akt signaling pathway is involved in MSC cartilage formation through a joint analysis of the mRNA sequencing and spatial transcriptome results. In a rat model of articular cartilage defects, our inversely engineered pericellular matrix-encapsulated MSC-loaded scaffolds show regenerative performance that are superior to those of scaffolds loaded with only MSCs. These results demonstrate the feasibility of using a PCM-mimicking system to improve MSC chondrogenesis and the efficacy of AC repair.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"317 ","pages":"123066"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123066","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes. Next, we demonstrate a rationally designed layer-by-layer single-cell encapsulation system which can mimic PCM mechanical responses and enhance MSC chondrogenesis via reestablished the mechanical coupling of PCM-like primitive matrix and chondrocytes. This successfully simulates the temporal and spatial characteristics of collagen secretion. Through investigation of the micromechanical environment of the cells and full-atom simulation analysis of TRPV4, we determine the specific mechanisms by which cellular mechanical forces near the cell are converted into biological signals. The TRPV4-YAP/TAZ-PI3K-Akt signaling pathway is involved in MSC cartilage formation through a joint analysis of the mRNA sequencing and spatial transcriptome results. In a rat model of articular cartilage defects, our inversely engineered pericellular matrix-encapsulated MSC-loaded scaffolds show regenerative performance that are superior to those of scaffolds loaded with only MSCs. These results demonstrate the feasibility of using a PCM-mimicking system to improve MSC chondrogenesis and the efficacy of AC repair.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.