A Machine Vision Perspective on Droplet-Based Microfluidics.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ji-Xiang Wang, Hongmei Wang, Huang Lai, Frank X Liu, Binbin Cui, Wei Yu, Yufeng Mao, Mo Yang, Shuhuai Yao
{"title":"A Machine Vision Perspective on Droplet-Based Microfluidics.","authors":"Ji-Xiang Wang, Hongmei Wang, Huang Lai, Frank X Liu, Binbin Cui, Wei Yu, Yufeng Mao, Mo Yang, Shuhuai Yao","doi":"10.1002/advs.202413146","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic droplets, with their unique properties and broad applications, are essential in in chemical, biological, and materials synthesis research. Despite the flourishing studies on artificial intelligence-accelerated microfluidics, most research efforts have focused on the upstream design phase of microfluidic systems. Generating user-desired microfluidic droplets still remains laborious, inefficient, and time-consuming. To address the long-standing challenges associated with the accurate and efficient identification, sorting, and analysis of the morphology and generation rate of single and double emulsion droplets, a novel machine vision approach utilizing the deformable detection transformer (DETR) algorithm is proposed. This method enables rapid and precise detection (detection relative error < 4% and precision > 94%) across various scales and scenarios, including real-world and simulated environments. Microfluidic droplets identification and analysis (MDIA), a web-based tool powered by Deformable DETR, which supports transfer learning to enhance accuracy in specific user scenarios is developed. MDIA characterizes droplets by diameter, number, frequency, and other parameters. As more training data are added by other users, MDIA's capability and universality expand, contributing to a comprehensive database for droplet microfluidics. The work highlights the potential of artificial intelligence in advancing microfluidic droplet regulation, fabrication, label-free sorting, and analysis, accelerating biochemical sciences and materials synthesis engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413146"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413146","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic droplets, with their unique properties and broad applications, are essential in in chemical, biological, and materials synthesis research. Despite the flourishing studies on artificial intelligence-accelerated microfluidics, most research efforts have focused on the upstream design phase of microfluidic systems. Generating user-desired microfluidic droplets still remains laborious, inefficient, and time-consuming. To address the long-standing challenges associated with the accurate and efficient identification, sorting, and analysis of the morphology and generation rate of single and double emulsion droplets, a novel machine vision approach utilizing the deformable detection transformer (DETR) algorithm is proposed. This method enables rapid and precise detection (detection relative error < 4% and precision > 94%) across various scales and scenarios, including real-world and simulated environments. Microfluidic droplets identification and analysis (MDIA), a web-based tool powered by Deformable DETR, which supports transfer learning to enhance accuracy in specific user scenarios is developed. MDIA characterizes droplets by diameter, number, frequency, and other parameters. As more training data are added by other users, MDIA's capability and universality expand, contributing to a comprehensive database for droplet microfluidics. The work highlights the potential of artificial intelligence in advancing microfluidic droplet regulation, fabrication, label-free sorting, and analysis, accelerating biochemical sciences and materials synthesis engineering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信