Peixue Liu, Jing Tang, Yating Lei, Lingling Zhang, Jingxuan Ye, Chun Wang, Lijie Zhou, Ye Liu, Zhenxing Wang, Jiafu Jiang, Fadi Chen, Aiping Song
{"title":"Construction of the KNOX-BELL interaction network and functional analysis of CmBLH2 under cold stress in Chrysanthemum morifolium.","authors":"Peixue Liu, Jing Tang, Yating Lei, Lingling Zhang, Jingxuan Ye, Chun Wang, Lijie Zhou, Ye Liu, Zhenxing Wang, Jiafu Jiang, Fadi Chen, Aiping Song","doi":"10.1016/j.ijbiomac.2024.139365","DOIUrl":null,"url":null,"abstract":"<p><p>The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported. In this study, 60 members of the TALE transcription factor family in chrysanthemum (Chrysanthemum morifolium) were systematically identified. These genes are distributed across 27 chromosomes, with most originating from whole-genome duplication events. Through comprehensive analyses of evolution, gene structure, and cis-regulatory elements, the expression patterns of these genes were elucidated, highlighting their roles in various developmental stages and stress responses, thereby expanding our understanding of the TALE gene family's functions in plants. Additionally, a KNOX-BELL protein interaction network in chrysanthemum was constructed, revealing 31 interaction pairs, including seven previously unreported combinations. The study also finds that the overexpression of CmBLH2 enhanced the activity of antioxidant system, reducing cellular damage under cold stress, while RNAi lines exhibited lower reactive oxygen species scavenging capacity. This research lays the foundation for further investigation of the TALE gene family's roles in development and stress responses in chrysanthemum and other species.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139365"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.139365","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported. In this study, 60 members of the TALE transcription factor family in chrysanthemum (Chrysanthemum morifolium) were systematically identified. These genes are distributed across 27 chromosomes, with most originating from whole-genome duplication events. Through comprehensive analyses of evolution, gene structure, and cis-regulatory elements, the expression patterns of these genes were elucidated, highlighting their roles in various developmental stages and stress responses, thereby expanding our understanding of the TALE gene family's functions in plants. Additionally, a KNOX-BELL protein interaction network in chrysanthemum was constructed, revealing 31 interaction pairs, including seven previously unreported combinations. The study also finds that the overexpression of CmBLH2 enhanced the activity of antioxidant system, reducing cellular damage under cold stress, while RNAi lines exhibited lower reactive oxygen species scavenging capacity. This research lays the foundation for further investigation of the TALE gene family's roles in development and stress responses in chrysanthemum and other species.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.