Environmental impact of an acid-forming alum shale waste rock legacy site in Norway†

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Mila K. Pelkonen, Estela Reinoso-Maset, Gareth T. W. Law, Ole Christian Lind and Lindis Skipperud
{"title":"Environmental impact of an acid-forming alum shale waste rock legacy site in Norway†","authors":"Mila K. Pelkonen, Estela Reinoso-Maset, Gareth T. W. Law, Ole Christian Lind and Lindis Skipperud","doi":"10.1039/D4EM00298A","DOIUrl":null,"url":null,"abstract":"<p >Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m<small><sup>3</sup></small> of alum shale was deposited in the 1980s–1990s. In 2006, ARD formation became obvious after high concentrations of leachable elements and low environmental pH were measured in a nearby stream. A manmade precipitation pond and liming treatments attempt to address the environmental pollution, but the site remains non-remediated. This study aimed to evaluate the extent of contamination caused by ARD and examine environmental and human health risks caused by mobilized trace elements and radionuclides. Surface water, sediment, soil, and biota samples were collected in the area and chemically and/or radiochemically analyzed to assess the prevailing concentrations within different environmental compartments. The elemental distribution and variation patterns were studied using principal component analysis. Most of the leachable elements were present in highly mobile and bioavailable forms in the pond water, out of which Cd, Mn, Ni, and U exceeded drinking water regulations. The highest enrichment in soil and sediment was for U, which was associated with the sulfide-bearing soil fraction, Fe, Cu, Mo, and As. No changes in water quality were observed between up- and downstream from the site, indicating that the Fe and S rich phases in the pond retain the leachable elements effectively under prevailing environmental conditions. This study provides valuable insights into the risks and challenges associated with ARD and where U is the main pollutant of concern.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 225-243"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/em/d4em00298a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/em/d4em00298a","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m3 of alum shale was deposited in the 1980s–1990s. In 2006, ARD formation became obvious after high concentrations of leachable elements and low environmental pH were measured in a nearby stream. A manmade precipitation pond and liming treatments attempt to address the environmental pollution, but the site remains non-remediated. This study aimed to evaluate the extent of contamination caused by ARD and examine environmental and human health risks caused by mobilized trace elements and radionuclides. Surface water, sediment, soil, and biota samples were collected in the area and chemically and/or radiochemically analyzed to assess the prevailing concentrations within different environmental compartments. The elemental distribution and variation patterns were studied using principal component analysis. Most of the leachable elements were present in highly mobile and bioavailable forms in the pond water, out of which Cd, Mn, Ni, and U exceeded drinking water regulations. The highest enrichment in soil and sediment was for U, which was associated with the sulfide-bearing soil fraction, Fe, Cu, Mo, and As. No changes in water quality were observed between up- and downstream from the site, indicating that the Fe and S rich phases in the pond retain the leachable elements effectively under prevailing environmental conditions. This study provides valuable insights into the risks and challenges associated with ARD and where U is the main pollutant of concern.

Abstract Image

挪威产酸明矾页岩废石遗址的环境影响。
斯堪的纳维亚的明矾页岩通常富含铀(U),当暴露于空气和水中时,可能产生酸性岩石排水(ARD),将潜在的有害元素释放到环境中。塔拉德鲁德是挪威东南部的一个遗产遗址,大约有200万人口。20世纪80年代至90年代沉积了5.1万立方米的明矾页岩。2006年,在附近的一条溪流中测量了高浓度的可浸出元素和低环境pH后,ARD的形成变得明显。一个人工沉淀池和石灰处理试图解决环境污染,但该场地仍未得到修复。本研究旨在评价放射性放射性污染物的污染程度,探讨其对环境和人体健康的危害。在该地区收集了地表水、沉积物、土壤和生物群样本,并进行了化学和/或放射化学分析,以评估不同环境隔间内的主要浓度。采用主成分分析方法研究了元素分布和变化规律。池水中可浸出元素大部分以高流动性和生物可利用性形式存在,其中Cd、Mn、Ni和U超过饮用水标准。U在土壤和沉积物中富集程度最高,与含硫化物的土壤组分、Fe、Cu、Mo和As有关。上游和下游的水质没有变化,这表明在当时的环境条件下,池塘中的富铁和富S相有效地保留了可浸出元素。这项研究为与ARD相关的风险和挑战以及U是主要污染物的地方提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信