Rapid detection of cardamom mosaic virus in crude plant extracts using reverse transcription-recombinase polymerase amplification-lateral flow assay (RT-RPA-LFA).

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-30 DOI:10.1007/s13205-024-04191-4
M Greeshma, A I Bhat
{"title":"Rapid detection of cardamom mosaic virus in crude plant extracts using reverse transcription-recombinase polymerase amplification-lateral flow assay (RT-RPA-LFA).","authors":"M Greeshma, A I Bhat","doi":"10.1007/s13205-024-04191-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cardamom mosaic virus causing mosaic/<i>katte</i> disease is the most destructive virus infecting cardamom. The development of effective diagnostic assays is essential for the production of virus-free plants, as the primary spread of the virus occurs through vegetative propagation. Currently used PCR-based assays are not suitable for Point-of-Care testing, require sophisticated equipment, and are time-consuming. Hence, in the present study, an assay based on reverse transcription-recombinase polymerase amplification (RT-RPA) combined with lateral flow assay (RT-RPA-LFA) was optimized for the specific, and sensitive detection of CdMV. The forward and reverse primers selected for RT-RPA were labeled with 6-carboxyfluorescein (FAM) and biotin respectively at the 5´end. The tedious total RNA preparation was avoided by using the crude extract as a template for the assay. A magnesium acetate concentration of 14 mM, 0.4 M betaine, temperature from 37 to 42 ℃, and 20 min of incubation time were found optimum for the assay. The entire RT-RPA-LFA from sample preparation to visualization of results could be completed within 40-50 min and the assay is suitable for Point-of-Care testing. The assay is specific for CdMV and could detect the virus up to 10<sup>-5</sup> dilutions of the crude extract. The assay was validated using field samples collected from different cardamom-growing regions of Kerala and Karnataka, India.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04191-4.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"28"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04191-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardamom mosaic virus causing mosaic/katte disease is the most destructive virus infecting cardamom. The development of effective diagnostic assays is essential for the production of virus-free plants, as the primary spread of the virus occurs through vegetative propagation. Currently used PCR-based assays are not suitable for Point-of-Care testing, require sophisticated equipment, and are time-consuming. Hence, in the present study, an assay based on reverse transcription-recombinase polymerase amplification (RT-RPA) combined with lateral flow assay (RT-RPA-LFA) was optimized for the specific, and sensitive detection of CdMV. The forward and reverse primers selected for RT-RPA were labeled with 6-carboxyfluorescein (FAM) and biotin respectively at the 5´end. The tedious total RNA preparation was avoided by using the crude extract as a template for the assay. A magnesium acetate concentration of 14 mM, 0.4 M betaine, temperature from 37 to 42 ℃, and 20 min of incubation time were found optimum for the assay. The entire RT-RPA-LFA from sample preparation to visualization of results could be completed within 40-50 min and the assay is suitable for Point-of-Care testing. The assay is specific for CdMV and could detect the virus up to 10-5 dilutions of the crude extract. The assay was validated using field samples collected from different cardamom-growing regions of Kerala and Karnataka, India.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04191-4.

逆转录重组酶-聚合酶扩增-横向流动法(RT-RPA-LFA)快速检测粗植物提取物中的豆蔻花叶病毒。
引起花叶病的小豆蔻花叶病毒是感染小豆蔻的最具破坏性的病毒。由于病毒的主要传播是通过无性繁殖发生的,因此开发有效的诊断方法对于生产无病毒植物至关重要。目前使用的基于pcr的分析方法不适合即时检测,需要复杂的设备,而且耗时。因此,本研究优化了一种基于逆转录重组酶聚合酶扩增(RT-RPA)结合侧流法(RT-RPA- lfa)的CdMV特异性、敏感性检测方法。选择的RT-RPA正向引物和反向引物在5′端分别用6-羧基荧光素(FAM)和生物素标记。通过使用粗提取物作为检测模板,避免了繁琐的总RNA制备。测定的最佳条件为乙酸镁浓度为14 mM,甜菜碱浓度为0.4 M,温度为37 ~ 42℃,培养时间为20 min。整个RT-RPA-LFA从样品制备到结果可视化可在40-50分钟内完成,该分析适用于即时检测。该试验对CdMV具有特异性,可以检测到10-5倍稀释的粗提取物中的病毒。利用从印度喀拉拉邦和卡纳塔克邦不同豆蔻种植区收集的田间样品验证了该测定方法。补充信息:在线版本包含补充资料,可在10.1007/s13205-024-04191-4获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信