Huibin Lin, Xinying Zheng, Liyuan Lin, Chaoyong Yang, Wei Wang
{"title":"Revealing NOD1-Activating Gram-Positive Gut Microbiota via in Vivo Labeling with a meso-Diaminopimelic Acid Probe.","authors":"Huibin Lin, Xinying Zheng, Liyuan Lin, Chaoyong Yang, Wei Wang","doi":"10.1021/acschembio.4c00629","DOIUrl":null,"url":null,"abstract":"<p><p>As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having <i>meso</i>-diaminopimelic acid (<i>m</i>-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain <i>m</i>-DAP in their PGN, giving them the potential to activate NOD1. The prevalence of <i>m</i>-DAP-type Gram-positive bacteria in the gut, however, remains largely unknown. Here, we report a stem-peptide-based <i>m</i>-DAP-containing tetrapeptide probe for labeling and identifying <i>m</i>-DAP-type Gram-positive microbiota. The probe was synthesized via a five-step convergent approach and demonstrated moderate selectivity toward <i>m</i>-DAP-type bacteria <i>in vitro</i>. <i>In vivo</i> labeling revealed that ∼13.7% of the mouse gut microbiota (mostly Gram-positive) was selectively labeled. We then identified <i>Oscillibacter</i> and several other Gram-positive genera in this population, most of which were previously unknown <i>m</i>-DAP-type bacteria. The following functional assay showed that <i>Oscillibacter</i>'s PGN could indeed activate NOD1, suggesting an overlooked NOD1-activating role for these Gram-positive bacteria. These findings deepen our understanding of the structural diversity of gut microbes and their interactions with the host's immune system.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00629","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having meso-diaminopimelic acid (m-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain m-DAP in their PGN, giving them the potential to activate NOD1. The prevalence of m-DAP-type Gram-positive bacteria in the gut, however, remains largely unknown. Here, we report a stem-peptide-based m-DAP-containing tetrapeptide probe for labeling and identifying m-DAP-type Gram-positive microbiota. The probe was synthesized via a five-step convergent approach and demonstrated moderate selectivity toward m-DAP-type bacteria in vitro. In vivo labeling revealed that ∼13.7% of the mouse gut microbiota (mostly Gram-positive) was selectively labeled. We then identified Oscillibacter and several other Gram-positive genera in this population, most of which were previously unknown m-DAP-type bacteria. The following functional assay showed that Oscillibacter's PGN could indeed activate NOD1, suggesting an overlooked NOD1-activating role for these Gram-positive bacteria. These findings deepen our understanding of the structural diversity of gut microbes and their interactions with the host's immune system.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.