Andrew Kent, Kristel Joy Yee Mon, Zachary Hutchins, Gregory Putzel, Dmitry Zhigarev, Alexander Grier, Baosen Jia, Roderik M. Kortlever, Gaetan Barbet, Gerard I. Evan, J. Magarian Blander
{"title":"A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis","authors":"Andrew Kent, Kristel Joy Yee Mon, Zachary Hutchins, Gregory Putzel, Dmitry Zhigarev, Alexander Grier, Baosen Jia, Roderik M. Kortlever, Gaetan Barbet, Gerard I. Evan, J. Magarian Blander","doi":"10.1038/s41590-024-02028-z","DOIUrl":null,"url":null,"abstract":"The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice. HSCs within an inflammasome-deficient stroma expressed a Ras signature associated with increased Ras pathway- and cancer-related transcripts and heightened levels of cytokine, chemokine and growth factor receptors. Stromal inflammasome deficiency established a poised Ras-dependent mitogenic state within HSCs, which fueled progeny B cell lymphomagenesis upon Myc deregulation in a spontaneous model of B cell lymphoma, and shortened its premalignant stage leading to faster onset of malignancy. Thus, the stromal inflammasome preserves tissue balance by restraining Ras to disrupt the most common oncogenic Myc–Ras cooperation and establish a natural defense against transition to malignancy. These findings should inform preventative therapies against hematological malignancies. Blander and colleagues report a homeostatic regulatory effect played by inflammasomes in the bone marrow stromal compartment that suppresses premalignant stages of lymphomagenesis.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"26 1","pages":"53-67"},"PeriodicalIF":27.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41590-024-02028-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice. HSCs within an inflammasome-deficient stroma expressed a Ras signature associated with increased Ras pathway- and cancer-related transcripts and heightened levels of cytokine, chemokine and growth factor receptors. Stromal inflammasome deficiency established a poised Ras-dependent mitogenic state within HSCs, which fueled progeny B cell lymphomagenesis upon Myc deregulation in a spontaneous model of B cell lymphoma, and shortened its premalignant stage leading to faster onset of malignancy. Thus, the stromal inflammasome preserves tissue balance by restraining Ras to disrupt the most common oncogenic Myc–Ras cooperation and establish a natural defense against transition to malignancy. These findings should inform preventative therapies against hematological malignancies. Blander and colleagues report a homeostatic regulatory effect played by inflammasomes in the bone marrow stromal compartment that suppresses premalignant stages of lymphomagenesis.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.