Heather L. Bloomfield, Mya Caverson, Heng-Yong Nie
{"title":"Classification of ToF-SIMS detected chemicals causing nearly 1000 automotive paint craters","authors":"Heather L. Bloomfield, Mya Caverson, Heng-Yong Nie","doi":"10.1007/s11998-024-00992-7","DOIUrl":null,"url":null,"abstract":"<div><p>When paint is applied to a substrate, the formation of paint craters is generally due to dewetting caused by a low surface energy substance present, such as siloxanes or perfluorocarbons, either on the substrate or in the paint that is applied to the substrate. As paint cratering is a surface phenomenon, the causing chemicals can be minimal both in size and quantity, or more precisely, below the detection limit of many analytical techniques. In order to identify the chemical responsible for paint craters, a technique that is extremely surface sensitive, chemically selective and capable of imaging is required. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) perfectly fits all these analysis requirements, and for the past decade we have used ToF-SIMS to identify automotive paint cratering chemicals. This article categorizes the paint cratering chemicals for the past decade and their distributions in terms of the four seasons. The information presented is expected to benefit both painting engineers and defect analysts in understanding possible/potential chemicals causing automotive paint craters, which is a costly failure in car manufacturing.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 1","pages":"447 - 459"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00992-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
When paint is applied to a substrate, the formation of paint craters is generally due to dewetting caused by a low surface energy substance present, such as siloxanes or perfluorocarbons, either on the substrate or in the paint that is applied to the substrate. As paint cratering is a surface phenomenon, the causing chemicals can be minimal both in size and quantity, or more precisely, below the detection limit of many analytical techniques. In order to identify the chemical responsible for paint craters, a technique that is extremely surface sensitive, chemically selective and capable of imaging is required. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) perfectly fits all these analysis requirements, and for the past decade we have used ToF-SIMS to identify automotive paint cratering chemicals. This article categorizes the paint cratering chemicals for the past decade and their distributions in terms of the four seasons. The information presented is expected to benefit both painting engineers and defect analysts in understanding possible/potential chemicals causing automotive paint craters, which is a costly failure in car manufacturing.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.