{"title":"Electrospun Fiber Membranes of Fe2O3/ZnO with High Photocatalytic Activity for Wastewater Treatment Application under Visible Light Irradiation","authors":"Qing Lin, Rui Zhang, Xiujuan Zhang, Shuang Li, Junhao Dai, Shuiping Li, Zhao Wang, Dong Liang, Hailuo Fu, Xiaojuan Zhang","doi":"10.1007/s10562-024-04905-6","DOIUrl":null,"url":null,"abstract":"<div><p>Fe<sub>2</sub>O<sub>3</sub>/ZnO fiber membranes, characterized by their high specific surface area and expanded UV–Vis absorption spectrum, were successfully synthesized through a process of electrospinning followed by calcination. The diameters of Fe<sub>2</sub>O<sub>3</sub>/ZnO fibers are approximately 150 nm, and the specific surface areas of Fe<sub>2</sub>O<sub>3</sub>/ZnO fiber membranes are around 29 m<sup>2</sup>/g. XRD, SEM, and XPS results confirm the formation of a heterojunction between ZnO and α-Fe<sub>2</sub>O<sub>3</sub>. Compared with pure ZnO fiber membrane, the UV–Vis absorptions of the Fe<sub>2</sub>O<sub>3</sub>/ZnO fiber membranes are extended, and transient photocurrent intensities are significantly increased from 0.65 mA/cm<sup>2</sup> to 0.86 mA/cm<sup>2</sup>. Free radical capture experiments further reveal the generation of abundant •OH radicals, which play a crucial role in enhancing the photocatalytic performance of these Fe<sub>2</sub>O<sub>3</sub>/ZnO fiber membranes. Optimization studies have determined that the optimal molar ratio of Fe to Zn is 8 mol% in the Fe<sub>2</sub>O<sub>3</sub>/ZnO heterojunction, which corresponds to a 45% improvement in photocatalytic degradation efficiency for MB. Furthermore, the remarkable cycling stability of the Fe<sub>2</sub>O<sub>3</sub>/ZnO fiber membranes demonstrate their substantial potential for photocatalytic dye wastewater treatment.</p></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04905-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe2O3/ZnO fiber membranes, characterized by their high specific surface area and expanded UV–Vis absorption spectrum, were successfully synthesized through a process of electrospinning followed by calcination. The diameters of Fe2O3/ZnO fibers are approximately 150 nm, and the specific surface areas of Fe2O3/ZnO fiber membranes are around 29 m2/g. XRD, SEM, and XPS results confirm the formation of a heterojunction between ZnO and α-Fe2O3. Compared with pure ZnO fiber membrane, the UV–Vis absorptions of the Fe2O3/ZnO fiber membranes are extended, and transient photocurrent intensities are significantly increased from 0.65 mA/cm2 to 0.86 mA/cm2. Free radical capture experiments further reveal the generation of abundant •OH radicals, which play a crucial role in enhancing the photocatalytic performance of these Fe2O3/ZnO fiber membranes. Optimization studies have determined that the optimal molar ratio of Fe to Zn is 8 mol% in the Fe2O3/ZnO heterojunction, which corresponds to a 45% improvement in photocatalytic degradation efficiency for MB. Furthermore, the remarkable cycling stability of the Fe2O3/ZnO fiber membranes demonstrate their substantial potential for photocatalytic dye wastewater treatment.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.