Lei Zhang, Zhihao Shu, Ji’E Tang, Xinmiao Wang, Bin Xie, Tiandi Tang
{"title":"Investigation of Catalytic Performance of γ-Bi2MoO6 Material on the Epoxidation of the Cyclohexene","authors":"Lei Zhang, Zhihao Shu, Ji’E Tang, Xinmiao Wang, Bin Xie, Tiandi Tang","doi":"10.1007/s10562-024-04909-2","DOIUrl":null,"url":null,"abstract":"<div><p>The development of efficient catalyst for the epoxidation of alkenes is crucial in industrial application. Herein, bismuth molybdate samples with different surface properties (BMO-<i>x</i>, <i>x</i> = A, B, and C) were synthesized <i>via</i> a hydrothermal method and tested in cyclohexene epoxidation. The BMO-A catalyst exhibited superior catalytic activity, achieving a 67.3% cyclohexene conversion with 83.6% epoxide selectivity, outperforming the BMO-B (17.4% conversion, 40.2% selectivity) and BMO-C (27.0% conversion, 59.1% selectivity) catalysts. This enhanced activity is attributed to BMO-A’s higher percentage of surface exchangeable oxygen, high surface Mo/Bi ratio, and optimal surface wettability. The high epoxidation performance of the BMO-A catalyst was attributed to its larger percentage of surface exchangeable oxygen, high surface Mo/Bi ratio, and suitable surface wettability. Specifically, the BMO-A with more exchangeable oxygen facilitated the adsorption of H<sub>2</sub>O<sub>2</sub> molecules, and subsequent reaction with cyclohexene to yield epoxy-cyclohexane. The hydrophilic surface of BMO-A further enhanced H<sub>2</sub>O<sub>2</sub> enrichment at the reaction interface. This work provides a new strategy for preparing highly active catalyst for the epoxidation of alkenes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04909-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient catalyst for the epoxidation of alkenes is crucial in industrial application. Herein, bismuth molybdate samples with different surface properties (BMO-x, x = A, B, and C) were synthesized via a hydrothermal method and tested in cyclohexene epoxidation. The BMO-A catalyst exhibited superior catalytic activity, achieving a 67.3% cyclohexene conversion with 83.6% epoxide selectivity, outperforming the BMO-B (17.4% conversion, 40.2% selectivity) and BMO-C (27.0% conversion, 59.1% selectivity) catalysts. This enhanced activity is attributed to BMO-A’s higher percentage of surface exchangeable oxygen, high surface Mo/Bi ratio, and optimal surface wettability. The high epoxidation performance of the BMO-A catalyst was attributed to its larger percentage of surface exchangeable oxygen, high surface Mo/Bi ratio, and suitable surface wettability. Specifically, the BMO-A with more exchangeable oxygen facilitated the adsorption of H2O2 molecules, and subsequent reaction with cyclohexene to yield epoxy-cyclohexane. The hydrophilic surface of BMO-A further enhanced H2O2 enrichment at the reaction interface. This work provides a new strategy for preparing highly active catalyst for the epoxidation of alkenes.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.