{"title":"LED-Light Induced Novel Additive/Base/Metal Free Brønsted Acid Functionalized Porphyrin to Afford N-Arylated Benzimidazole","authors":"Rutuja Ganesh Maske, Pundlik Rambhau Bhagat","doi":"10.1007/s10562-024-04854-0","DOIUrl":null,"url":null,"abstract":"<div><p>A convenient method for the C–N bond formation via Brønsted acid functionalized porphyrin (BAFPc) catalyzed reaction of aryl halides with benzimidazole was achieved. In this work, novel BAFPc photocatalyst bearing sulfonic acid functionality, was synthesized, and characterized using <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR, BET, and elemental analysis by SEM/EDAX. The proton level by Hammett acidity function (H<sub>0</sub> = 0.923) and energy band gap (Eg = 1.26 eV) were determined by UV–Visible spectrophotometer. The present metal-free environmental benign route afforded C–N coupling under irradiation of LED-light in lab-made photoreactor in absence of strong base/additive at normal conditions. The photocatalytic reaction was found to be suitable with a variety of aryl halides, (X = Cl, Br) comprising activating and deactivating groups, offering the N-arylated products under given conditions affording satisfactory yield (60 and 58%). Further, this methodology can also be predominantly employed for the construction of C–N derivatives of different heterocycles under optimized conditions with good to admirable yields (49–67%). Moreover, the optimized protocol exhibited competence for C–N coupling of benzyl chloride and benzimidazole to afford drug intermediates like Chlormidazole with good yield (62%). Furthermore, BAFPc, was recycled for 6 times using model reaction supporting heterogeneous and environmental benign protocol.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04854-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A convenient method for the C–N bond formation via Brønsted acid functionalized porphyrin (BAFPc) catalyzed reaction of aryl halides with benzimidazole was achieved. In this work, novel BAFPc photocatalyst bearing sulfonic acid functionality, was synthesized, and characterized using 1H NMR, 13C NMR, FT-IR, BET, and elemental analysis by SEM/EDAX. The proton level by Hammett acidity function (H0 = 0.923) and energy band gap (Eg = 1.26 eV) were determined by UV–Visible spectrophotometer. The present metal-free environmental benign route afforded C–N coupling under irradiation of LED-light in lab-made photoreactor in absence of strong base/additive at normal conditions. The photocatalytic reaction was found to be suitable with a variety of aryl halides, (X = Cl, Br) comprising activating and deactivating groups, offering the N-arylated products under given conditions affording satisfactory yield (60 and 58%). Further, this methodology can also be predominantly employed for the construction of C–N derivatives of different heterocycles under optimized conditions with good to admirable yields (49–67%). Moreover, the optimized protocol exhibited competence for C–N coupling of benzyl chloride and benzimidazole to afford drug intermediates like Chlormidazole with good yield (62%). Furthermore, BAFPc, was recycled for 6 times using model reaction supporting heterogeneous and environmental benign protocol.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.