Jinhai Hu, Guanhong He, Kai Zhang, Yilin Wu, Hong Yan
{"title":"Novel Zn4In2S7 Loaded Mg/N Doped CQDs Composites with Improved Visible-Light Photocatalytic Properties for Depolymerization of Sodium Lignosulfonate","authors":"Jinhai Hu, Guanhong He, Kai Zhang, Yilin Wu, Hong Yan","doi":"10.1007/s10562-024-04899-1","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalysis purifies industrial paper wastewater by selectively breaking bonding bonds in lignin. To address the shortcomings of single photocatalysts such as narrow photoresponsive region, high photogenerated carrier complexation rate, and low photocatalytic activity. In this paper, Mg and N doped carbon quantum dots (Mg/N doped CQDs) were prepared by hydrothermal method. Then Zn<sub>4</sub>In<sub>2</sub>S<sub>7</sub> series catalysts with different loadings (0, 0.3, 0.6, 1.2 wt %) of Mg/N doped CQDs (denoted as ZIS 350 °C, ZIS-3 350 °C, ZIS-6 350 °C, ZIS-12 350 °C) were constructed based on condensation reflux and inert gas calcination method. The catalyst possesses highly efficient visible light-catalyzed depolymerization of sodium lignosulfonate (SLS), an industrial waste material. From the BET curve, the specific surface area of ZIS-6 350 °C was the largest. The composite of Mg/N doped CQDs reduced the band gap of Zn<sub>4</sub>In<sub>2</sub>S<sub>7</sub> while promoting the separation and transfer of photogenerated electrons/holes, as confirmed by DRS, Mott-Schottky, transient photocurrent and EIS analyses. From the photocatalytic activity test, the photocatalytic depolymerization of lignin by ZIS-6 350 °C was increased by 21.2% compared with that of ZIS 350 °C, and the reactions all follow the pseudo first order kinetic model. A possible photocatalytic mechanism was proposed based on the active species capture experiments.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04899-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis purifies industrial paper wastewater by selectively breaking bonding bonds in lignin. To address the shortcomings of single photocatalysts such as narrow photoresponsive region, high photogenerated carrier complexation rate, and low photocatalytic activity. In this paper, Mg and N doped carbon quantum dots (Mg/N doped CQDs) were prepared by hydrothermal method. Then Zn4In2S7 series catalysts with different loadings (0, 0.3, 0.6, 1.2 wt %) of Mg/N doped CQDs (denoted as ZIS 350 °C, ZIS-3 350 °C, ZIS-6 350 °C, ZIS-12 350 °C) were constructed based on condensation reflux and inert gas calcination method. The catalyst possesses highly efficient visible light-catalyzed depolymerization of sodium lignosulfonate (SLS), an industrial waste material. From the BET curve, the specific surface area of ZIS-6 350 °C was the largest. The composite of Mg/N doped CQDs reduced the band gap of Zn4In2S7 while promoting the separation and transfer of photogenerated electrons/holes, as confirmed by DRS, Mott-Schottky, transient photocurrent and EIS analyses. From the photocatalytic activity test, the photocatalytic depolymerization of lignin by ZIS-6 350 °C was increased by 21.2% compared with that of ZIS 350 °C, and the reactions all follow the pseudo first order kinetic model. A possible photocatalytic mechanism was proposed based on the active species capture experiments.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.