Synthesis of UiO–66–NH2(Ti/Zr) and its Catalytic Conversion of Cellulose to 5-HMF

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Lingling Xu, Xiaomei Pan, Lijing Gao, Ruiping Wei, Jihang Li, Xiu Wen, Yuanzhuang Li, Guomin Xiao
{"title":"Synthesis of UiO–66–NH2(Ti/Zr) and its Catalytic Conversion of Cellulose to 5-HMF","authors":"Lingling Xu,&nbsp;Xiaomei Pan,&nbsp;Lijing Gao,&nbsp;Ruiping Wei,&nbsp;Jihang Li,&nbsp;Xiu Wen,&nbsp;Yuanzhuang Li,&nbsp;Guomin Xiao","doi":"10.1007/s10562-024-04851-3","DOIUrl":null,"url":null,"abstract":"<div><p>UiO–66–NH<sub>2</sub>(Ti/Zr) modified by Ti metal oxide (TiO<sub>2</sub>) was used to catalyze the hydrolysis of cellulose to prepare 5-HMF. Under the optimal reaction conditions of H<sub>2</sub>O(NaCl)/THF(1/4 mL), 190 °C, 2 h and 50 mg UNT-3(Ti/Zr) (TiO<sub>2</sub> and UiO–66–NH<sub>2</sub> with mass of 1.5 and 0.1 g, respectively), the yield of 5-hydroxymethylfurfural reached 59.88%. UiO–66–NH<sub>2</sub>(Ti/Zr) nanocomposites with different mass ratios were successfully prepared by simple solvent evaporation method. SEM and TEM have shown that the modified UiO–66–NH<sub>2</sub>(Ti/Zr) are wrapped into sphere by TiO<sub>2</sub> densely attached to the surface of UiO–66–NH<sub>2</sub>, which provides favorable conditions for the uniform dispersion of TiO<sub>2</sub> and coordination of the Lewis acidic site of UiO–66–NH<sub>2</sub>. NH<sub>3</sub>–TPD results confirmed the existence of super-strong, strong, middle and weak acid sites in UiO–66–NH<sub>2</sub>(Ti/Zr), and Py-FTIR confirmed the existence of Brønsted and Lewis acids. After four cycles, the yield of 5-HMF and FUR decreased slightly from 59.88 to 51.89% and 9.11 to 7.66%, respectively, and the yield of 5-HMF could still remain above 50%. The results showed that the modified composite treatment of TiO<sub>2</sub> with rich Lewis acid/base and UiO–66–NH<sub>2</sub> could provide a certain idea for the extensive application of biomass research in the future.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04851-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

UiO–66–NH2(Ti/Zr) modified by Ti metal oxide (TiO2) was used to catalyze the hydrolysis of cellulose to prepare 5-HMF. Under the optimal reaction conditions of H2O(NaCl)/THF(1/4 mL), 190 °C, 2 h and 50 mg UNT-3(Ti/Zr) (TiO2 and UiO–66–NH2 with mass of 1.5 and 0.1 g, respectively), the yield of 5-hydroxymethylfurfural reached 59.88%. UiO–66–NH2(Ti/Zr) nanocomposites with different mass ratios were successfully prepared by simple solvent evaporation method. SEM and TEM have shown that the modified UiO–66–NH2(Ti/Zr) are wrapped into sphere by TiO2 densely attached to the surface of UiO–66–NH2, which provides favorable conditions for the uniform dispersion of TiO2 and coordination of the Lewis acidic site of UiO–66–NH2. NH3–TPD results confirmed the existence of super-strong, strong, middle and weak acid sites in UiO–66–NH2(Ti/Zr), and Py-FTIR confirmed the existence of Brønsted and Lewis acids. After four cycles, the yield of 5-HMF and FUR decreased slightly from 59.88 to 51.89% and 9.11 to 7.66%, respectively, and the yield of 5-HMF could still remain above 50%. The results showed that the modified composite treatment of TiO2 with rich Lewis acid/base and UiO–66–NH2 could provide a certain idea for the extensive application of biomass research in the future.

Graphic Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
文献相关原料
公司名称
产品信息
阿拉丁
5-hydroxymethylfurfural (HMF)
阿拉丁
furfural (FUR)
阿拉丁
ZrCl<sub>4</sub>
阿拉丁
Nano-titanium dioxide (TiO<sub>2</sub>)
阿拉丁
N,N-dimethylamide (DMF)
阿拉丁
2-amino-terephthalic acid (BDC-NH<sub>2</sub>)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信