Milan Gumtya, Ayan Mondal, Rahul Banerjee and Debasish Haldar
{"title":"Efficient electrocatalytic water oxidation by N-phthaloyl-γ-aminobutyric acid-cobalt 1D MOF†","authors":"Milan Gumtya, Ayan Mondal, Rahul Banerjee and Debasish Haldar","doi":"10.1039/D4NJ03470H","DOIUrl":null,"url":null,"abstract":"<p >Water electrolysis is critical for generating hydrogen and oxygen as alternative renewable fuels. The primary challenge lies in developing simple, economical, and eco-friendly catalysts with minimal overpotential. This study introduces a cobalt-based 1D metal–organic framework (MOF) as a highly efficient catalyst for water oxidation under electrochemical conditions. Significantly, the ligand and water bridges between Co(<small>II</small>) centers play a crucial role in electrocatalysis. Through electrochemical, spectroscopic, and electron microscopy analyses, we demonstrate that the 1D MOF is an effective heterogeneous electrocatalyst for water oxidation, achieving a high faradaic efficiency of 85% and an overpotential of just 390 mV. These findings offer a new direction in designing cost-effective and highly efficient transition-metal-based catalysts for water oxidation.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 2","pages":" 530-535"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj03470h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water electrolysis is critical for generating hydrogen and oxygen as alternative renewable fuels. The primary challenge lies in developing simple, economical, and eco-friendly catalysts with minimal overpotential. This study introduces a cobalt-based 1D metal–organic framework (MOF) as a highly efficient catalyst for water oxidation under electrochemical conditions. Significantly, the ligand and water bridges between Co(II) centers play a crucial role in electrocatalysis. Through electrochemical, spectroscopic, and electron microscopy analyses, we demonstrate that the 1D MOF is an effective heterogeneous electrocatalyst for water oxidation, achieving a high faradaic efficiency of 85% and an overpotential of just 390 mV. These findings offer a new direction in designing cost-effective and highly efficient transition-metal-based catalysts for water oxidation.