External electric field assisted laser-induced plasma and bubble dynamics for optimizing Mn2O3 nanoparticles as UV emitters

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Sanchia Mae Kharphanbuh and Arpita Nath
{"title":"External electric field assisted laser-induced plasma and bubble dynamics for optimizing Mn2O3 nanoparticles as UV emitters","authors":"Sanchia Mae Kharphanbuh and Arpita Nath","doi":"10.1039/D4JA00163J","DOIUrl":null,"url":null,"abstract":"<p >To gain a deeper understanding of how the size of the nanoparticles synthesized by Electric Field-Assisted Laser Ablation in Liquids (EFLAL) changes with the applied electric field, we use Laser-Induced Breakdown Spectroscopy (LIBS) and a Beam Deflection Set-up (BDS). These tools help us examine how the electric field strength affects the plasma parameters and the bubble dynamics. The findings show that the electron density and plasma temperature are perturbed as the electric field strength can alter the interaction region. The strength of the electric field can cause the bubble size to increase, which also elevates its pressure and temperature. These alterations at the breakdown region lead to changes in the size, properties, and production of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> nanoparticles. Thus, the interplay of laser plasma and fluid-assisted bubble phenomena in the presence of an electric field is probed for Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> nanoparticles thereby optimizing as UV emitters.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 1","pages":" 186-194"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d4ja00163j","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To gain a deeper understanding of how the size of the nanoparticles synthesized by Electric Field-Assisted Laser Ablation in Liquids (EFLAL) changes with the applied electric field, we use Laser-Induced Breakdown Spectroscopy (LIBS) and a Beam Deflection Set-up (BDS). These tools help us examine how the electric field strength affects the plasma parameters and the bubble dynamics. The findings show that the electron density and plasma temperature are perturbed as the electric field strength can alter the interaction region. The strength of the electric field can cause the bubble size to increase, which also elevates its pressure and temperature. These alterations at the breakdown region lead to changes in the size, properties, and production of the Mn2O3 nanoparticles. Thus, the interplay of laser plasma and fluid-assisted bubble phenomena in the presence of an electric field is probed for Mn2O3 nanoparticles thereby optimizing as UV emitters.

Abstract Image

外电场辅助激光诱导等离子体和气泡动力学优化Mn2O3纳米颗粒作为紫外发射器
为了更深入地了解电场辅助液体激光烧蚀(EFLAL)合成的纳米颗粒尺寸如何随外加电场变化,我们使用了激光诱导击穿光谱(LIBS)和光束偏转装置(BDS)。这些工具帮助我们研究电场强度如何影响等离子体参数和气泡动力学。结果表明,电场强度会改变相互作用区域,从而对电子密度和等离子体温度产生扰动。电场的强度会使气泡增大,从而使气泡的压力和温度升高。击穿区域的这些变化导致了Mn2O3纳米颗粒的尺寸、性能和生产的变化。因此,在电场存在下,研究了激光等离子体和流体辅助气泡现象的相互作用,从而优化了Mn2O3纳米颗粒作为紫外发射器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信