HYPR4D Kernel Method With an Unsupervised 2.5SD+0.5TD Deep Learning Assisted Kernel Matrix

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ju-Chieh Kevin Cheng;Erik Reimers;Vesna Sossi
{"title":"HYPR4D Kernel Method With an Unsupervised 2.5SD+0.5TD Deep Learning Assisted Kernel Matrix","authors":"Ju-Chieh Kevin Cheng;Erik Reimers;Vesna Sossi","doi":"10.1109/TRPMS.2024.3442690","DOIUrl":null,"url":null,"abstract":"We describe a deep learning (DL) assisted HYPR4D kernelized reconstruction which produces low-noise voxel-level time-activity-curves (TACs) while preserving quantification within small structures as well as consistent spatiotemporal patterns/features within measured data. The proposed method consists of the following advantages over other methods: 1) unsupervised single subject network training scheme independent of positron emission tomography (PET) tracers; 2) training data generated on-the-fly during reconstruction; 3) intrinsic spatiotemporal consistency provided by minimizing the \n<inline-formula> <tex-math>$L_{2}$ </tex-math></inline-formula>\n loss using pseudo 4-D (i.e., 2.5 Spatial Dimension + 0.5 Temporal Dimension or 2.5SD+0.5TD) patches between kernelized OSEM subset estimates; and 4) a final tuning step which minimizes over-smoothing from the network output within the kernel matrix. Contrast phantom, human [18F]FDG and [11C]RAC data acquired on GE SIGNA PET/MR were used for evaluations. The proposed DL HYPR4D kernel method outperformed the standard HYPR4D kernel method as well as TOF-OSEM and TOF-BSREM (Q.Clear) in terms contrast recovery versus noise. The proposed final tuning reduced the underestimation bias due to over-smoothing within a 4-mm target structure from ~15% to ~2% while maintaining low-noise voxel-level TACs. In addition, the proposed unsupervised DL assisted reconstruction also outperformed the supervised DL version in terms of bias reduction along the TACs and kinetic model fittings.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"20-28"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10634197/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a deep learning (DL) assisted HYPR4D kernelized reconstruction which produces low-noise voxel-level time-activity-curves (TACs) while preserving quantification within small structures as well as consistent spatiotemporal patterns/features within measured data. The proposed method consists of the following advantages over other methods: 1) unsupervised single subject network training scheme independent of positron emission tomography (PET) tracers; 2) training data generated on-the-fly during reconstruction; 3) intrinsic spatiotemporal consistency provided by minimizing the $L_{2}$ loss using pseudo 4-D (i.e., 2.5 Spatial Dimension + 0.5 Temporal Dimension or 2.5SD+0.5TD) patches between kernelized OSEM subset estimates; and 4) a final tuning step which minimizes over-smoothing from the network output within the kernel matrix. Contrast phantom, human [18F]FDG and [11C]RAC data acquired on GE SIGNA PET/MR were used for evaluations. The proposed DL HYPR4D kernel method outperformed the standard HYPR4D kernel method as well as TOF-OSEM and TOF-BSREM (Q.Clear) in terms contrast recovery versus noise. The proposed final tuning reduced the underestimation bias due to over-smoothing within a 4-mm target structure from ~15% to ~2% while maintaining low-noise voxel-level TACs. In addition, the proposed unsupervised DL assisted reconstruction also outperformed the supervised DL version in terms of bias reduction along the TACs and kinetic model fittings.
基于非监督2.5SD+0.5TD深度学习辅助核矩阵的HYPR4D核方法
我们描述了一种深度学习(DL)辅助的HYPR4D核化重建,该重建产生低噪声体素级时间-活动曲线(tac),同时保留小结构内的量化以及测量数据内一致的时空模式/特征。与其他方法相比,该方法具有以下优点:1)独立于正电子发射断层扫描(PET)示踪剂的无监督单主体网络训练方案;2)重建过程中实时生成的训练数据;3)利用伪4-D(即2.5空间维数+0.5时间维数或2.5 sd +0.5 td)补丁在核化OSEM子集估计之间最小化$L_{2}$损失,从而提供固有的时空一致性;4)最后的调整步骤,最大限度地减少核矩阵内网络输出的过度平滑。使用GE SIGNA PET/MR上获得的对比幻影、人[18F]FDG和[11C]RAC数据进行评估。提出的DL HYPR4D核方法在对比度恢复与噪声方面优于标准HYPR4D核方法以及TOF-OSEM和TOF-BSREM (Q.Clear)。在保持低噪声体素级tac的同时,提出的最终调谐将由于4毫米目标结构内的过度平滑而导致的低估偏差从~15%降低到~2%。此外,所提出的无监督深度学习辅助重建在沿tac和动力学模型拟合的偏差减少方面也优于有监督的深度学习版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信