XGenRecon: A New Perspective in Ultrasparse Volumetric CBCT Reconstruction Through Geometry-Controlled X-Ray Projection Generation

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Chulong Zhang;Yaoqin Xie;Xiaokun Liang
{"title":"XGenRecon: A New Perspective in Ultrasparse Volumetric CBCT Reconstruction Through Geometry-Controlled X-Ray Projection Generation","authors":"Chulong Zhang;Yaoqin Xie;Xiaokun Liang","doi":"10.1109/TRPMS.2024.3420742","DOIUrl":null,"url":null,"abstract":"We propose a novel paradigm for cone-beam computed tomography (CBCT) reconstruction from ultrasparse X-ray projections, by introducing a framework that generates auxiliary X-ray projections under controlled geometric parameters. This innovation overcomes the limitations of conventional methods that are constrained to producing fixed-angle projections. Our approach is organized into three key modules: 1) the XGen module; 2) X-Correction module; and 3) CT-Correction module. Through the XGen module, we generate projections based on any given geometric parameters to supplement the geometric information in the projection domain. The X-Correction module then introduces geometric corrections to harmonize the generated projections. Finally, through the CT-Correction module, the reconstructed image undergoes refining, thereby enhancing the image quality within the image domain. We have validated our model on several datasets, including a large-scale publicly available lung CT dataset (LIDC-IDRI with 1018 patients); an extensive abdominal CT dataset (AbdomenCT-1K, with a selected 1k patients); and our proprietary pelvic CT dataset, collated from a hospital (445 patients). Real walnut projection data were also incorporated for genuine projection validation. Compared to the traditional projection generation methods and the state-of-the-art ultrasparse reconstruction techniques on 2-view and 10-view tasks, our method has demonstrated consistently superior performance across various tasks.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"95-106"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10577466/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel paradigm for cone-beam computed tomography (CBCT) reconstruction from ultrasparse X-ray projections, by introducing a framework that generates auxiliary X-ray projections under controlled geometric parameters. This innovation overcomes the limitations of conventional methods that are constrained to producing fixed-angle projections. Our approach is organized into three key modules: 1) the XGen module; 2) X-Correction module; and 3) CT-Correction module. Through the XGen module, we generate projections based on any given geometric parameters to supplement the geometric information in the projection domain. The X-Correction module then introduces geometric corrections to harmonize the generated projections. Finally, through the CT-Correction module, the reconstructed image undergoes refining, thereby enhancing the image quality within the image domain. We have validated our model on several datasets, including a large-scale publicly available lung CT dataset (LIDC-IDRI with 1018 patients); an extensive abdominal CT dataset (AbdomenCT-1K, with a selected 1k patients); and our proprietary pelvic CT dataset, collated from a hospital (445 patients). Real walnut projection data were also incorporated for genuine projection validation. Compared to the traditional projection generation methods and the state-of-the-art ultrasparse reconstruction techniques on 2-view and 10-view tasks, our method has demonstrated consistently superior performance across various tasks.
XGenRecon:几何控制x射线投影生成在超解析体积CBCT重建中的新视角
我们提出了一种基于超解析x射线投影的锥形束计算机断层扫描(CBCT)重建的新范式,通过引入一个框架,该框架在受控的几何参数下生成辅助x射线投影。这种创新克服了传统方法只能产生固定角度投影的局限性。我们的方法分为三个关键模块:1)XGen模块;2) X-Correction模块;3) ct校正模块。通过XGen模块,我们可以根据任意给定的几何参数生成投影,以补充投影域中的几何信息。然后,X-Correction模块引入几何校正来协调生成的投影。最后,通过CT-Correction模块对重构图像进行细化,从而在图像域内增强图像质量。我们已经在几个数据集上验证了我们的模型,包括一个大规模的公开可用的肺部CT数据集(LIDC-IDRI, 1018名患者);广泛的腹部CT数据集(腹CT- 1k,选择了1k例患者);以及我们从一家医院(445名患者)整理的专有骨盆CT数据集。真实的核桃投影数据也被纳入真实的投影验证。与传统的投影生成方法和最先进的超解析重建技术相比,我们的方法在各种任务中表现出一贯的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信