List-Mode PET Image Reconstruction Using Dykstra-Like Splitting

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kibo Ote;Fumio Hashimoto;Yuya Onishi;Yasuomi Ouchi
{"title":"List-Mode PET Image Reconstruction Using Dykstra-Like Splitting","authors":"Kibo Ote;Fumio Hashimoto;Yuya Onishi;Yasuomi Ouchi","doi":"10.1109/TRPMS.2024.3441526","DOIUrl":null,"url":null,"abstract":"Convergence of the block iterative method in image reconstruction for positron emission tomography (PET) requires careful control of relaxation parameters, which is a challenging task. The automatic determination of relaxation parameters for list-mode reconstructions also remains challenging. Therefore, a different approach would be desirable. In this study, we propose a list-mode maximum-likelihood Dykstra-like splitting PET reconstruction (LM-MLDS) that reduces the limit-cycle amplitude by adding the distance from an initial image as a penalty term into an objective function. LM-MLDS uses a two-step approach because its performance depends on the quality of the initial image. The first step uses a uniform image as the initial image, whereas the second step uses a reconstructed image after one main iteration as the initial image. In a simulation study, LM-MLDS provided a better tradeoff curve between noise and contrast than the other methods. In a clinical study, LM-MLDS removed the false hotspots at the edge of the axial field of view and improved the image quality of slices covering the top of the head to the cerebellum. List-mode proximal splitting reconstruction is useful not only for optimizing nondifferential functions but also for mitigating the limit-cycle phenomenon in block iterative methods.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"29-39"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10632070/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Convergence of the block iterative method in image reconstruction for positron emission tomography (PET) requires careful control of relaxation parameters, which is a challenging task. The automatic determination of relaxation parameters for list-mode reconstructions also remains challenging. Therefore, a different approach would be desirable. In this study, we propose a list-mode maximum-likelihood Dykstra-like splitting PET reconstruction (LM-MLDS) that reduces the limit-cycle amplitude by adding the distance from an initial image as a penalty term into an objective function. LM-MLDS uses a two-step approach because its performance depends on the quality of the initial image. The first step uses a uniform image as the initial image, whereas the second step uses a reconstructed image after one main iteration as the initial image. In a simulation study, LM-MLDS provided a better tradeoff curve between noise and contrast than the other methods. In a clinical study, LM-MLDS removed the false hotspots at the edge of the axial field of view and improved the image quality of slices covering the top of the head to the cerebellum. List-mode proximal splitting reconstruction is useful not only for optimizing nondifferential functions but also for mitigating the limit-cycle phenomenon in block iterative methods.
使用Dykstra-Like分裂的列表模式PET图像重建
正电子发射断层扫描(PET)图像重建中块迭代法的收敛性要求严格控制松弛参数,这是一项具有挑战性的任务。列表模式重建的松弛参数的自动确定也仍然具有挑战性。因此,需要一种不同的方法。在这项研究中,我们提出了一种列表模式最大似然Dykstra-like分割PET重建(LM-MLDS),通过将与初始图像的距离作为惩罚项添加到目标函数中来降低极限环幅度。LM-MLDS使用两步方法,因为它的性能取决于初始图像的质量。第一步使用均匀图像作为初始图像,而第二步使用经过一次主迭代后的重构图像作为初始图像。在仿真研究中,LM-MLDS比其他方法在噪声和对比度之间提供了更好的权衡曲线。在一项临床研究中,LM-MLDS消除了轴向视野边缘的假热点,提高了覆盖头顶至小脑的切片的图像质量。列表型近端分裂重构不仅可以用于优化非微分函数,而且可以减轻块迭代方法中的极限环现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信