High-Responsivity Waveguide-Integrated ${{\mathbf{G}{{\mathbf{e}}_{1 - {\bm{x}}}}\mathbf{S}{{\mathbf{n}}_{\bm{x}}}}}/{{\mathbf{Ge}}}$-Based p-i-n Photodetectors on Silicon Platform for Short-Wave Infrared Applications

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Harshvardhan Kumar;Rikmantra Basu
{"title":"High-Responsivity Waveguide-Integrated ${{\\mathbf{G}{{\\mathbf{e}}_{1 - {\\bm{x}}}}\\mathbf{S}{{\\mathbf{n}}_{\\bm{x}}}}}/{{\\mathbf{Ge}}}$-Based p-i-n Photodetectors on Silicon Platform for Short-Wave Infrared Applications","authors":"Harshvardhan Kumar;Rikmantra Basu","doi":"10.1109/LSENS.2024.3512942","DOIUrl":null,"url":null,"abstract":"This letter presents a novel approach to improve the optical responsivity by developing \n<inline-formula><tex-math>$\\mathrm{G}{{\\mathrm{e}}_{1 - x}}\\mathrm{S}{{\\mathrm{n}}_x}/\\text{Ge}$</tex-math></inline-formula>\n waveguide-integrated \n<italic>p-i-n</i>\n photodetectors (WGPDs) on the silicon (Si) platform. The proposed WGPD demonstrates an absorbance of ∼99%, which is 50% greater than the absorbance shown by the conventional \n<italic>p-i-n</i>\n PD. In addition, the WG core's height and the PD's length significantly impact the optical evanescent field. Specifically, when the WG core height is increased, it results in a decrease in responsivity. On the other hand, increasing the PD length leads to increased responsivity. As a result of optimizing the WG core height and PD length, the WGPD achieves an unprecedented level of responsivity at a wavelength of 1.55 µm. The responsivity at a wavelength of 1.55 µm is >1.97A/W, surpassing the performance of both conventional \n<italic>p-i-n</i>\n PD and previously theoretically reported values. It is remarkable to note that this value of responsivity is the highest theoretical value to date. Therefore, the proposed \n<inline-formula><tex-math>$\\mathrm{G}{{\\mathrm{e}}_{1 - x}}\\mathrm{S}{{\\mathrm{n}}_x}/\\text{Ge}$</tex-math></inline-formula>\n-on-Si WGPD presents a promising opportunity for developing high-performance optical receivers in short-wave infrared (SWIR) bands.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 1","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786234/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a novel approach to improve the optical responsivity by developing $\mathrm{G}{{\mathrm{e}}_{1 - x}}\mathrm{S}{{\mathrm{n}}_x}/\text{Ge}$ waveguide-integrated p-i-n photodetectors (WGPDs) on the silicon (Si) platform. The proposed WGPD demonstrates an absorbance of ∼99%, which is 50% greater than the absorbance shown by the conventional p-i-n PD. In addition, the WG core's height and the PD's length significantly impact the optical evanescent field. Specifically, when the WG core height is increased, it results in a decrease in responsivity. On the other hand, increasing the PD length leads to increased responsivity. As a result of optimizing the WG core height and PD length, the WGPD achieves an unprecedented level of responsivity at a wavelength of 1.55 µm. The responsivity at a wavelength of 1.55 µm is >1.97A/W, surpassing the performance of both conventional p-i-n PD and previously theoretically reported values. It is remarkable to note that this value of responsivity is the highest theoretical value to date. Therefore, the proposed $\mathrm{G}{{\mathrm{e}}_{1 - x}}\mathrm{S}{{\mathrm{n}}_x}/\text{Ge}$ -on-Si WGPD presents a promising opportunity for developing high-performance optical receivers in short-wave infrared (SWIR) bands.
高响应波导集成${\mathbf{G}{{\mathbf{e}}_{1 - {\bm{x}}}}\mathbf{S}{{\mathbf{n}}_{\bm{x}}}}}/{{\mathbf{Ge}}}$基于硅平台的短波红外p-i-n光电探测器
本文提出了一种在硅(Si)平台上开发$\mathrm{G}{{\mathrm{e}}_{1 - x}}\mathrm{S}{{\mathrm{n}}_x}/\text{Ge}$波导集成p-i-n光电探测器(wgpd)来提高光响应性的新方法。所提出的WGPD的吸光度为99%,比传统的p-i-n PD的吸光度高50%。此外,WG核心的高度和PD的长度对光倏逝场有显著影响。具体来说,当WG核心高度增加时,它会导致响应度下降。另一方面,增加PD长度会增加响应性。由于优化了WG核心高度和PD长度,WGPD在1.55 μ m波长处达到了前所未有的响应水平。在1.55µm波长处的响应度为>1.97A/W,超过了传统p-i-n PD的性能和先前理论报道的值。值得注意的是,这个响应性值是迄今为止最高的理论值。因此,所提出的$\mathrm{G}{{\mathrm{e}}_{1 - x}}\mathrm{S}{{\mathrm{n}}_x}/\text{Ge}$-on- si WGPD为开发高性能短波红外(SWIR)波段光接收机提供了很好的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信