MAG-Net: A Multiscale Adaptive Generation Network for PET Synthetic CT

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Huabin Wang;Zongguang Li;Xianjun Han;Gong Zhang;Qiang Zhang;Dailei Zhang;Fei Liu
{"title":"MAG-Net: A Multiscale Adaptive Generation Network for PET Synthetic CT","authors":"Huabin Wang;Zongguang Li;Xianjun Han;Gong Zhang;Qiang Zhang;Dailei Zhang;Fei Liu","doi":"10.1109/TRPMS.2024.3418831","DOIUrl":null,"url":null,"abstract":"In traditional positron emission computed tomography (PET)/computed tomography (CT) imaging, CT can be used to accurately display lesion anatomical structure. However, CT is not available in single brain PET imaging system. Therefore, this article proposes a novel generation network (MAG-Net) for generating CT images with clear morphological details from PET. The MAG-Net contains three unique features: 1) a parallel multiscale adaptive module is designed to extract robust features of PET, which can improve the quality of the generated images with various resolutions; 2) a binarized contour mask module is applied to constrain the generating process of the fake CT. It can guide the model focusing on generating more CT texture details; and 3) a pixel-level feature encoder is designed to reduce the pixel difference and achieve the accuracy of generated CT by mapping the position information of CT tissues and structures corresponding to bright and dark areas. Experimental results on the SCHERI dataset show that compared with real CT images, structural similarity and PSNR index of generated images reach 0.909 and 26.386. The results of visualization experiments show that the generated CT has clear texture details and realistic morphological structure, which can make the single brain PET imaging system close to the PET/CT imaging system.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"83-94"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10571573/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In traditional positron emission computed tomography (PET)/computed tomography (CT) imaging, CT can be used to accurately display lesion anatomical structure. However, CT is not available in single brain PET imaging system. Therefore, this article proposes a novel generation network (MAG-Net) for generating CT images with clear morphological details from PET. The MAG-Net contains three unique features: 1) a parallel multiscale adaptive module is designed to extract robust features of PET, which can improve the quality of the generated images with various resolutions; 2) a binarized contour mask module is applied to constrain the generating process of the fake CT. It can guide the model focusing on generating more CT texture details; and 3) a pixel-level feature encoder is designed to reduce the pixel difference and achieve the accuracy of generated CT by mapping the position information of CT tissues and structures corresponding to bright and dark areas. Experimental results on the SCHERI dataset show that compared with real CT images, structural similarity and PSNR index of generated images reach 0.909 and 26.386. The results of visualization experiments show that the generated CT has clear texture details and realistic morphological structure, which can make the single brain PET imaging system close to the PET/CT imaging system.
PET合成CT多尺度自适应生成网络
在传统的正电子发射计算机断层扫描(PET)/计算机断层扫描(CT)成像中,CT可以准确显示病变的解剖结构。然而,CT在单脑PET成像系统中是不可用的。因此,本文提出了一种新的生成网络(MAG-Net),用于生成具有清晰形态学细节的PET CT图像。MAG-Net具有三个独特的特点:1)设计了一个并行的多尺度自适应模块来提取PET的鲁棒特征,提高了不同分辨率下生成图像的质量;2)采用二值化轮廓掩模对伪CT的生成过程进行约束。它可以引导模型专注于生成更多的CT纹理细节;3)设计像素级特征编码器,通过映射CT组织结构与明暗区域对应的位置信息,减小像素差,达到生成CT的精度。在SCHERI数据集上的实验结果表明,与真实CT图像相比,生成的图像结构相似度和PSNR指数分别达到0.909和26.386。可视化实验结果表明,生成的CT具有清晰的纹理细节和逼真的形态结构,可以使单脑PET成像系统接近PET/CT成像系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信