Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-02 DOI:10.1021/acsnano.4c12754
Rufan Mo, Ying Peng, Zeyang Ding, Huilin Xie, Zijie Qiu, Parvej Alam, Yong Liu, Gang Chen, Jianquan Zhang, Zheng Zhao, Ben Zhong Tang
{"title":"Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe","authors":"Rufan Mo, Ying Peng, Zeyang Ding, Huilin Xie, Zijie Qiu, Parvej Alam, Yong Liu, Gang Chen, Jianquan Zhang, Zheng Zhao, Ben Zhong Tang","doi":"10.1021/acsnano.4c12754","DOIUrl":null,"url":null,"abstract":"Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and <i>in vivo</i> imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging. MeOTFVP is strategically designed to target cell membranes by integrating into the phospholipid bilayer through its amphipathy. The donor–acceptor molecular skeleton facilitates a red shift of its photoluminescence into the near-infrared (NIR) spectrum, significantly improving tissue penetration. The affinity of MeOTFVP for cell membranes, coupled with its deep tissue penetration, allows precise tracing in the paw-dorsal root ganglia (DRG) circuit and detailed imaging of the sciatic nerve. This study showcases the application of MeOTFVP as a dual-function neuronal tracer, propelling forward the possibilities for advanced neuronal tracing and imaging using AIEgens.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12754","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and in vivo imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging. MeOTFVP is strategically designed to target cell membranes by integrating into the phospholipid bilayer through its amphipathy. The donor–acceptor molecular skeleton facilitates a red shift of its photoluminescence into the near-infrared (NIR) spectrum, significantly improving tissue penetration. The affinity of MeOTFVP for cell membranes, coupled with its deep tissue penetration, allows precise tracing in the paw-dorsal root ganglia (DRG) circuit and detailed imaging of the sciatic nerve. This study showcases the application of MeOTFVP as a dual-function neuronal tracer, propelling forward the possibilities for advanced neuronal tracing and imaging using AIEgens.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信