Gary N. Sheldrake, Niamh M. Curran, Christopher W.J. Murnaghan
{"title":"Synthetic efforts towards the phenyl glycosidic class of lignin-carbohydrate complex models","authors":"Gary N. Sheldrake, Niamh M. Curran, Christopher W.J. Murnaghan","doi":"10.1016/j.biombioe.2024.107555","DOIUrl":null,"url":null,"abstract":"<div><div>Within biomass as a whole, the linkages which are present have been largely identified and elucidated, one of the key types off linkages and functionalities which have been identified are lignin-carbohydrate complexes (LCC). These are the major bonding patterns found in biomass between the carbohydrate (cellulose & hemicellulose) and lignin functionalities from extracted portions of biomass. One of the main bonding patterns within LCCs is phenyl glycosidic, where the C1 of the carbohydrate is bonded through an ether bond to an aromatic ring. The synthesis of such compounds which represent extracted portions of biomass have a carbohydrate portion and therefore will allow for water solubility and negates the need for organic solvents when probing depolymerisation studies.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"193 ","pages":"Article 107555"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424005087","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Within biomass as a whole, the linkages which are present have been largely identified and elucidated, one of the key types off linkages and functionalities which have been identified are lignin-carbohydrate complexes (LCC). These are the major bonding patterns found in biomass between the carbohydrate (cellulose & hemicellulose) and lignin functionalities from extracted portions of biomass. One of the main bonding patterns within LCCs is phenyl glycosidic, where the C1 of the carbohydrate is bonded through an ether bond to an aromatic ring. The synthesis of such compounds which represent extracted portions of biomass have a carbohydrate portion and therefore will allow for water solubility and negates the need for organic solvents when probing depolymerisation studies.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.