High-Entropy Metal Interstitials Activate TiO2 for Robust Catalytic Oxidation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao-Cheng Liu, Geng Wu, Xiao Han, Yang Wang, Bei Wu, Gongming Wang, Yang Mu, Xun Hong
{"title":"High-Entropy Metal Interstitials Activate TiO2 for Robust Catalytic Oxidation","authors":"Xiao-Cheng Liu, Geng Wu, Xiao Han, Yang Wang, Bei Wu, Gongming Wang, Yang Mu, Xun Hong","doi":"10.1002/adma.202416749","DOIUrl":null,"url":null,"abstract":"Substitution metal doping strategies are crucial for developing catalysts capable of activating O<sub>2</sub>, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO<sub>2</sub> (HE-TiO<sub>2</sub>) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO<sub>2</sub>, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO<sub>2</sub>. Theoretical analysis and in situ synchrotron radiation Fourier transform infrared studies reveal that the electron of metal interstitials can populate the subgap states within the host TiO<sub>2</sub>, enabling a moderate adsorption band for robust and efficient O<sub>2</sub> activation. This study introduces a universal strategy for synthesizing a novel class of high-entropy materials with integrated metal interstitials in metal oxides, promising to enhance the stability and efficiency of O<sub>2</sub> activation catalysts and broaden their potential applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"66 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416749","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Substitution metal doping strategies are crucial for developing catalysts capable of activating O2, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO2 (HE-TiO2) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO2, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO2. Theoretical analysis and in situ synchrotron radiation Fourier transform infrared studies reveal that the electron of metal interstitials can populate the subgap states within the host TiO2, enabling a moderate adsorption band for robust and efficient O2 activation. This study introduces a universal strategy for synthesizing a novel class of high-entropy materials with integrated metal interstitials in metal oxides, promising to enhance the stability and efficiency of O2 activation catalysts and broaden their potential applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信