Autocatalytic Interfacial Synthesis of Self-Standing Amide-Linked Covalent Organic Framework Membranes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Fang, Hui Xu, Suyu Qiu, Tao Ye, Tianqi Wang, Jin Shang, Cheng Gu, Susumu Kitagawa, Liangchun Li
{"title":"Autocatalytic Interfacial Synthesis of Self-Standing Amide-Linked Covalent Organic Framework Membranes","authors":"Lei Fang, Hui Xu, Suyu Qiu, Tao Ye, Tianqi Wang, Jin Shang, Cheng Gu, Susumu Kitagawa, Liangchun Li","doi":"10.1002/anie.202423220","DOIUrl":null,"url":null,"abstract":"The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP). Highly crystalline amide and imine bilinker COF (AICOF) membranes are readily synthesized by AIP strategy which ingeniously leverages interfacial polymerization to generate amide units followed by an autocatalytic condensation that forms imine bonds. Then, the fully amide-linked AmCOF membranes with Turing structures can be prepared through irreversible linker renovation. The universality of this method has been exemplified by nine AmCOF membranes. Among them, the AmCOF-1 membrane exhibits superior performance for H2O2 photosynthesis (4353 µmol g−1 h−1) and high stability, enabling continuous production of H2O2 under sunlight for 150 h without sacrificial agents. Mechanistic investigations reveal that the greatly improved properties are attributable to the built-in robust amide knots, facilitating full separation of electrons and holes, ultra-long exciton diffusion length, and fast dissociation of excitons within the AmCOF channels.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"5 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423220","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP). Highly crystalline amide and imine bilinker COF (AICOF) membranes are readily synthesized by AIP strategy which ingeniously leverages interfacial polymerization to generate amide units followed by an autocatalytic condensation that forms imine bonds. Then, the fully amide-linked AmCOF membranes with Turing structures can be prepared through irreversible linker renovation. The universality of this method has been exemplified by nine AmCOF membranes. Among them, the AmCOF-1 membrane exhibits superior performance for H2O2 photosynthesis (4353 µmol g−1 h−1) and high stability, enabling continuous production of H2O2 under sunlight for 150 h without sacrificial agents. Mechanistic investigations reveal that the greatly improved properties are attributable to the built-in robust amide knots, facilitating full separation of electrons and holes, ultra-long exciton diffusion length, and fast dissociation of excitons within the AmCOF channels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信