Microenvironment-Regulated Dual-Layer Microneedle Patch for Promoting Periodontal Soft and Hard Tissue Regeneration in Diabetic Periodontitis

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaning Qu, Huajing Zeng, Lei Wang, Zhenlin Ge, Bin Liu, Zengjie Fan
{"title":"Microenvironment-Regulated Dual-Layer Microneedle Patch for Promoting Periodontal Soft and Hard Tissue Regeneration in Diabetic Periodontitis","authors":"Yaning Qu, Huajing Zeng, Lei Wang, Zhenlin Ge, Bin Liu, Zengjie Fan","doi":"10.1002/adfm.202418076","DOIUrl":null,"url":null,"abstract":"Chronic periodontitis in individuals with diabetes can exacerbate the destruction of local periodontal soft tissues and accelerate the resorption of hard tissue. Currently, effective strategies to simultaneously restore both soft and hard periodontal tissues remain insufficient. To address this challenge, a multifunctional dual-layer microneedles (d-MNs) design is proposed to regenerate both periodontal soft and hard tissues in diabetic patients. The d-MNs substrate is composed of gelatin methacryloyl (GelMA) infused with nano-hydroxyapatite (nHA), which facilitates the differentiation of osteogenic cells into osteoblasts, thereby promoting alveolar bone regeneration. The tips of the d-MNs, on the other hand, are primarily made of hyaluronic acid (HA) combined with a magnesium-based metal-organic framework (Mg-MOF) loaded with glucose oxidase (GOX). This composition creates a hypoglycemic, angiogenic, and anti-inflammatory microenvironment, which supports soft tissue repair. When implanted at the site of periodontitis, the synergistic interaction between the d-MNs substrate and tips effectively promotes the regeneration of both soft and hard tissues, as demonstrated in diabetic rat models of periodontitis. These innovative d-MNs have the potential to revolutionize traditional approaches to treating diabetic periodontitis and can see broad application in dental clinics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"23 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418076","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic periodontitis in individuals with diabetes can exacerbate the destruction of local periodontal soft tissues and accelerate the resorption of hard tissue. Currently, effective strategies to simultaneously restore both soft and hard periodontal tissues remain insufficient. To address this challenge, a multifunctional dual-layer microneedles (d-MNs) design is proposed to regenerate both periodontal soft and hard tissues in diabetic patients. The d-MNs substrate is composed of gelatin methacryloyl (GelMA) infused with nano-hydroxyapatite (nHA), which facilitates the differentiation of osteogenic cells into osteoblasts, thereby promoting alveolar bone regeneration. The tips of the d-MNs, on the other hand, are primarily made of hyaluronic acid (HA) combined with a magnesium-based metal-organic framework (Mg-MOF) loaded with glucose oxidase (GOX). This composition creates a hypoglycemic, angiogenic, and anti-inflammatory microenvironment, which supports soft tissue repair. When implanted at the site of periodontitis, the synergistic interaction between the d-MNs substrate and tips effectively promotes the regeneration of both soft and hard tissues, as demonstrated in diabetic rat models of periodontitis. These innovative d-MNs have the potential to revolutionize traditional approaches to treating diabetic periodontitis and can see broad application in dental clinics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信