A reproducing kernel particle method (RKPM) algorithm for solving the tropical Pacific Ocean model

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Mostafa Abbaszadeh, Maryam Parvizi, Amirreza Khodadadian, Thomas Wick, Mehdi Dehghan
{"title":"A reproducing kernel particle method (RKPM) algorithm for solving the tropical Pacific Ocean model","authors":"Mostafa Abbaszadeh, Maryam Parvizi, Amirreza Khodadadian, Thomas Wick, Mehdi Dehghan","doi":"10.1016/j.camwa.2024.12.011","DOIUrl":null,"url":null,"abstract":"Meshless methods have become increasingly popular for solving a wide range of problems in both solid and fluid mechanics. In this study, we focus on a meshless numerical approach to solve the tropical Pacific Ocean model, which captures the horizontal velocity and layer thickness of ocean waves, using an advanced meshless Galerkin technique known as the reproducing kernel particle method (RKPM). To address the temporal component in this scheme, we apply a Crank-Nicolson finite difference method, resulting in a semi-discrete formulation. For spatial discretization, we use a kernel-based meshless Galerkin method that integrates the strengths of finite element methods with reproducing kernel particle approximations. We conduct a comprehensive stability analysis and provide an a priori estimate for the semi-discrete solution. Furthermore, we derive error estimates for both the semi-discrete and fully discrete solutions. Finally, we validate the theoretical findings and evaluate the method's efficiency through real-world test cases.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Meshless methods have become increasingly popular for solving a wide range of problems in both solid and fluid mechanics. In this study, we focus on a meshless numerical approach to solve the tropical Pacific Ocean model, which captures the horizontal velocity and layer thickness of ocean waves, using an advanced meshless Galerkin technique known as the reproducing kernel particle method (RKPM). To address the temporal component in this scheme, we apply a Crank-Nicolson finite difference method, resulting in a semi-discrete formulation. For spatial discretization, we use a kernel-based meshless Galerkin method that integrates the strengths of finite element methods with reproducing kernel particle approximations. We conduct a comprehensive stability analysis and provide an a priori estimate for the semi-discrete solution. Furthermore, we derive error estimates for both the semi-discrete and fully discrete solutions. Finally, we validate the theoretical findings and evaluate the method's efficiency through real-world test cases.
求解热带太平洋模式的再现核粒子法(RKPM)算法
无网格方法在解决固体和流体力学中的广泛问题方面越来越受欢迎。在本研究中,我们重点研究了一种无网格数值方法来求解热带太平洋模型,该模型使用一种称为再现核粒子法(RKPM)的先进无网格伽辽金技术来捕获海浪的水平速度和层厚。为了解决该方案中的时间分量,我们应用了Crank-Nicolson有限差分方法,从而得到半离散公式。对于空间离散化,我们使用基于核的无网格伽辽金方法,该方法将有限元方法的优势与再现核粒子近似相结合。我们进行了全面的稳定性分析,并提供了半离散解的先验估计。此外,我们导出了半离散和完全离散解的误差估计。最后,我们通过实际测试案例验证了理论发现并评估了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信