Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang
{"title":"Robust finite element solvers for distributed hyperbolic optimal control problems","authors":"Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang","doi":"10.1016/j.camwa.2024.12.012","DOIUrl":null,"url":null,"abstract":"We propose, analyze, and test new robust iterative solvers for systems of linear algebraic equations arising from the space-time finite element discretization of reduced optimality systems defining the approximate solution of hyperbolic distributed, tracking-type optimal control problems with both the standard <mml:math altimg=\"si1.svg\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> and the more general energy regularizations. In contrast to the usual time-stepping approach, we discretize the optimality system by space-time continuous piecewise-linear finite element basis functions which are defined on fully unstructured simplicial meshes. If we aim at the asymptotically best approximation of the given desired state <mml:math altimg=\"si2.svg\"><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub></mml:math> by the computed finite element state <mml:math altimg=\"si3.svg\"><mml:msub><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>ϱ</mml:mi><mml:mi>h</mml:mi></mml:mrow></mml:msub></mml:math>, then the optimal choice of the regularization parameter <ce:italic>ϱ</ce:italic> is linked to the space-time finite element mesh-size <ce:italic>h</ce:italic> by the relations <mml:math altimg=\"si208.svg\"><mml:mi>ϱ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math altimg=\"si241.svg\"><mml:mi>ϱ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> for the <mml:math altimg=\"si1.svg\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> and the energy regularization, respectively. For this setting, we can construct robust (parallel) iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in the case of adaptive mesh refinements. The numerical results illustrate the theoretical findings firmly.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose, analyze, and test new robust iterative solvers for systems of linear algebraic equations arising from the space-time finite element discretization of reduced optimality systems defining the approximate solution of hyperbolic distributed, tracking-type optimal control problems with both the standard L2 and the more general energy regularizations. In contrast to the usual time-stepping approach, we discretize the optimality system by space-time continuous piecewise-linear finite element basis functions which are defined on fully unstructured simplicial meshes. If we aim at the asymptotically best approximation of the given desired state yd by the computed finite element state yϱh, then the optimal choice of the regularization parameter ϱ is linked to the space-time finite element mesh-size h by the relations ϱ=h4 and ϱ=h2 for the L2 and the energy regularization, respectively. For this setting, we can construct robust (parallel) iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in the case of adaptive mesh refinements. The numerical results illustrate the theoretical findings firmly.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).