{"title":"Nutrient enrichment weakens the positive feedback of soil organic carbon decomposition to short-term warming in subtropical forests","authors":"Ming-Hui Meng, Chao Liang, Jin He, Zi-Yi Shi, Fu-Sheng Chen, Fang-Chao Wang, Xue-Li Jiang, Xiang-Min Fang","doi":"10.1007/s11104-024-07171-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Nitrogen (N) and phosphorus (P) deposition, along with climate warming, are key environmental factors driving soil organic carbon (SOC) dynamics in forests. The study aimed to explore the impact of N and P enrichment on soil respiration (SR) and its temperature sensitivity (Q<sub>10</sub>) under short-term warming, and to reveal the underlying microbial mechanisms.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We collected soil samples from subtropical forests with 7 years of N and P additions, and conducted an incubation experiment at 15 °C, 25 °C, and 35 °C. SR and its Q<sub>10</sub>, microbial carbon use efficiency (CUE), the Q<sub>10</sub> of soil extracellular enzyme activities (EEAs) and extracellular enzyme stoichiometry (EES) were evaluated.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>N and P additions reduced the Q<sub>10</sub> of SR within the temperature interval of 15–25 °C (moderate environment, MoE), indicating that increased nutrient availability weakens the positive feedback of SOC decomposition to warming in the MoE. The Q<sub>10</sub> of SR in the MoE was positively correlated with the Q<sub>10</sub> of β-D-cellobiohydrolase, but not with the CUE or Q<sub>10</sub> of EES, indicating that the reaction of SOC decomposition to warming depends on changes in C cycle-related enzymes rather than microbial resource availability. N addition reduced SR at 25 °C and 35 °C, and the vector length and angle of EEAs were closely related to SR, suggesting that SR depends on microbial nutrient limitation.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our study highlights the importance of the Q<sub>10</sub> of soil enzymes in predicting SOC dynamics under short-term warming. Nutrient enrichment will promote SOC sequestration under climate warming in moderate environments.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"27 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07171-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Nitrogen (N) and phosphorus (P) deposition, along with climate warming, are key environmental factors driving soil organic carbon (SOC) dynamics in forests. The study aimed to explore the impact of N and P enrichment on soil respiration (SR) and its temperature sensitivity (Q10) under short-term warming, and to reveal the underlying microbial mechanisms.
Methods
We collected soil samples from subtropical forests with 7 years of N and P additions, and conducted an incubation experiment at 15 °C, 25 °C, and 35 °C. SR and its Q10, microbial carbon use efficiency (CUE), the Q10 of soil extracellular enzyme activities (EEAs) and extracellular enzyme stoichiometry (EES) were evaluated.
Results
N and P additions reduced the Q10 of SR within the temperature interval of 15–25 °C (moderate environment, MoE), indicating that increased nutrient availability weakens the positive feedback of SOC decomposition to warming in the MoE. The Q10 of SR in the MoE was positively correlated with the Q10 of β-D-cellobiohydrolase, but not with the CUE or Q10 of EES, indicating that the reaction of SOC decomposition to warming depends on changes in C cycle-related enzymes rather than microbial resource availability. N addition reduced SR at 25 °C and 35 °C, and the vector length and angle of EEAs were closely related to SR, suggesting that SR depends on microbial nutrient limitation.
Conclusion
Our study highlights the importance of the Q10 of soil enzymes in predicting SOC dynamics under short-term warming. Nutrient enrichment will promote SOC sequestration under climate warming in moderate environments.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.