Field phytometers and lab tests demonstrate that rock dust can outperform dolomite and fertilisers for acid forest soil restoration

IF 3.9 2区 农林科学 Q1 AGRONOMY
Robrecht Van Der Bauwhede, Leon van den Berg, Karen Vancampenhout, Erik Smolders, Bart Muys
{"title":"Field phytometers and lab tests demonstrate that rock dust can outperform dolomite and fertilisers for acid forest soil restoration","authors":"Robrecht Van Der Bauwhede, Leon van den Berg, Karen Vancampenhout, Erik Smolders, Bart Muys","doi":"10.1007/s11104-024-07175-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Soil amendments with rock dust have been proposed for restoring regeneration on ultra-acidified forest soils. Rock dust is a poorly defined amendment, and its mode of action remains unclear. This study was set up to identify rock dust properties that predict plant responses in the field.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A field experiment with sycamore maple (<i>Acer pseudoplatanus</i> L.) saplings in two sites in the Campine region (NL) was constructed, both at a clearcut (soil pH = 3.5) and under the canopy of <i>Pinus sylvestris</i> L. (pH = 3.1). Treatments included six rock dusts and four reference treatments (TSP, dolomite, KCl, their combination). Rock dusts were amended in the planting pit and broadcast after being characterised for chemical composition and tested for dissolution in accelerated laboratory tests. Sapling growth was monitored for 40 months.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Tree growth was affected by the site and rock dust type. The highest tree volume increases relative to the unamended control were with phonolite that increased volume by a factor 2 (clearcut) and by a factor 8 (under-canopy). On the clearcut, these increases were larger than the reference conventional dolomite and fertilisation treatments. Here, growth was only explained by rock dust’s water retention, which was superior for a zeolite-containing rock dust. Under-canopy, both growth and foliar nutrition were best related to liming and nutrient release by rock dust inferred from an 8-week laboratory-based soil + rock dust suspension test.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Rock dusts are effective to regenerate acid forest soils and laboratory tests of accelerated weathering can inform their potential.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07175-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Soil amendments with rock dust have been proposed for restoring regeneration on ultra-acidified forest soils. Rock dust is a poorly defined amendment, and its mode of action remains unclear. This study was set up to identify rock dust properties that predict plant responses in the field.

Methods

A field experiment with sycamore maple (Acer pseudoplatanus L.) saplings in two sites in the Campine region (NL) was constructed, both at a clearcut (soil pH = 3.5) and under the canopy of Pinus sylvestris L. (pH = 3.1). Treatments included six rock dusts and four reference treatments (TSP, dolomite, KCl, their combination). Rock dusts were amended in the planting pit and broadcast after being characterised for chemical composition and tested for dissolution in accelerated laboratory tests. Sapling growth was monitored for 40 months.

Results

Tree growth was affected by the site and rock dust type. The highest tree volume increases relative to the unamended control were with phonolite that increased volume by a factor 2 (clearcut) and by a factor 8 (under-canopy). On the clearcut, these increases were larger than the reference conventional dolomite and fertilisation treatments. Here, growth was only explained by rock dust’s water retention, which was superior for a zeolite-containing rock dust. Under-canopy, both growth and foliar nutrition were best related to liming and nutrient release by rock dust inferred from an 8-week laboratory-based soil + rock dust suspension test.

Conclusion

Rock dusts are effective to regenerate acid forest soils and laboratory tests of accelerated weathering can inform their potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信