Schiff Base-Mediated Dual Active Site Catalyst for Efficient N-Formylation of Amines with CO2

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Xingyan Wang, Huixin Yan, Xiaoyu Liang, Xinxin Zhang, Min Ji, Min Wang, Xinkui Wang
{"title":"Schiff Base-Mediated Dual Active Site Catalyst for Efficient N-Formylation of Amines with CO2","authors":"Xingyan Wang, Huixin Yan, Xiaoyu Liang, Xinxin Zhang, Min Ji, Min Wang, Xinkui Wang","doi":"10.1021/acs.jpclett.4c02948","DOIUrl":null,"url":null,"abstract":"Using CO<sub>2</sub> as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO<sub>2</sub> activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO<sub>2</sub>). The modification of the Schiff base not only provides an alkaline environment for CO<sub>2</sub> absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H<sub>2</sub> cleavage. The Schiff base-mediated Au catalyst significantly increased the yield of <i>N</i>-formylmorpholine from 3.9% in unmodified Au/SiO<sub>2</sub> to 83.3% without the addition of any other additives. This work provides a new avenue for designing multisite catalysts by supporting surface modification to achieve simultaneous activation of multiple target substrates for synergistic catalysis.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"134 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02948","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using CO2 as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO2 activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO2). The modification of the Schiff base not only provides an alkaline environment for CO2 absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H2 cleavage. The Schiff base-mediated Au catalyst significantly increased the yield of N-formylmorpholine from 3.9% in unmodified Au/SiO2 to 83.3% without the addition of any other additives. This work provides a new avenue for designing multisite catalysts by supporting surface modification to achieve simultaneous activation of multiple target substrates for synergistic catalysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信