From photocatalysis to photon–phonon co-driven catalysis for methanol reforming to hydrogen and valuable by-products

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hui Wang, Eleana Harkou, Achilleas Constantinou, Sultan M. Al-Salemc, George Manos, Junwang Tang
{"title":"From photocatalysis to photon–phonon co-driven catalysis for methanol reforming to hydrogen and valuable by-products","authors":"Hui Wang, Eleana Harkou, Achilleas Constantinou, Sultan M. Al-Salemc, George Manos, Junwang Tang","doi":"10.1039/d4cs00551a","DOIUrl":null,"url":null,"abstract":"Hydrogen energy will play a dominant role in energy transition from fossil fuel to low carbon processes, while economical, efficient, and safe hydrogen storage and transportation technology has become one of the main bottlenecks that currently hinder the application of the hydrogen energy scale. Methanol has widely been regarded as a primary liquid H<small><sub>2</sub></small> storage medium due to its high hydrogen content, easy storage and transportation and relatively low toxicity. Hydrogen release from methanol using photocatalysis has thus been the focus of intense research and recent years have witnessed its fast progress and drawbacks. This review offers a comprehensive overview of methanol-based hydrogen production <em>via</em> photocatalysis, spotlighting recent developments in photocatalysts referring to thermal catalysts, including efficient semiconductors and cocatalysts, followed by the discussion of mechanistic investigation <em>via</em> advanced techniques and their disadvantages. Beyond this, particular focus has been placed on the discussion of co-driven processes involving coupling of photons (photocatalysis) with phonons (thermal catalysis) – the concept of photon–phonon co-driven catalysis – for methanol reforming and cutting-edge reactor design strategies, in order to enhance the overall process efficiency and applicability. Concluding with forward-looking insights, this review aims to provide valuable guidance for future research on hydrogen release through methanol reforming.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"68 1","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00551a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen energy will play a dominant role in energy transition from fossil fuel to low carbon processes, while economical, efficient, and safe hydrogen storage and transportation technology has become one of the main bottlenecks that currently hinder the application of the hydrogen energy scale. Methanol has widely been regarded as a primary liquid H2 storage medium due to its high hydrogen content, easy storage and transportation and relatively low toxicity. Hydrogen release from methanol using photocatalysis has thus been the focus of intense research and recent years have witnessed its fast progress and drawbacks. This review offers a comprehensive overview of methanol-based hydrogen production via photocatalysis, spotlighting recent developments in photocatalysts referring to thermal catalysts, including efficient semiconductors and cocatalysts, followed by the discussion of mechanistic investigation via advanced techniques and their disadvantages. Beyond this, particular focus has been placed on the discussion of co-driven processes involving coupling of photons (photocatalysis) with phonons (thermal catalysis) – the concept of photon–phonon co-driven catalysis – for methanol reforming and cutting-edge reactor design strategies, in order to enhance the overall process efficiency and applicability. Concluding with forward-looking insights, this review aims to provide valuable guidance for future research on hydrogen release through methanol reforming.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信