Hong Zou, Zheng Niu, Peng Cheng, Chunxia Wu, Wenjie Li, Gan Luo, Shilei Huang
{"title":"Structure, Attachment and Transmembrane Internalisation of Peste Des Petits Ruminants Virus.","authors":"Hong Zou, Zheng Niu, Peng Cheng, Chunxia Wu, Wenjie Li, Gan Luo, Shilei Huang","doi":"10.1002/vms3.70182","DOIUrl":null,"url":null,"abstract":"<p><p>Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L). Each protein has a distinct role in the virus's life cycle. Although the life cycle activities of PPRV have been widely reported, they are still limited. Research has demonstrated that PPRV has distinct adhesion factors on various cell surfaces, such as the epithelial cell adhesion factor nectin-4 or the lymphocyte adhesion factor SLAM. After attaching to the cell, the F and H proteins on the PPRV membrane interact with each other, resulting in a conformational change in the F protein. This change allows the F protein to enter the cell through direct fusion with the host cell membrane. The virus enters the host cell via the outer vesicle endocytosis strategy and replicates and proliferates through the role of caveolin, actin, dynein and cholesterol on the host cell membrane. This review summarises the viral structure, attachment mechanism and transmembrane internalisation mechanism of PPRV. The aim of this review is to provide theoretical support for the development of PPRV inhibitors and the prevention and control of PPR.</p>","PeriodicalId":23543,"journal":{"name":"Veterinary Medicine and Science","volume":"11 1","pages":"e70182"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Medicine and Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/vms3.70182","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L). Each protein has a distinct role in the virus's life cycle. Although the life cycle activities of PPRV have been widely reported, they are still limited. Research has demonstrated that PPRV has distinct adhesion factors on various cell surfaces, such as the epithelial cell adhesion factor nectin-4 or the lymphocyte adhesion factor SLAM. After attaching to the cell, the F and H proteins on the PPRV membrane interact with each other, resulting in a conformational change in the F protein. This change allows the F protein to enter the cell through direct fusion with the host cell membrane. The virus enters the host cell via the outer vesicle endocytosis strategy and replicates and proliferates through the role of caveolin, actin, dynein and cholesterol on the host cell membrane. This review summarises the viral structure, attachment mechanism and transmembrane internalisation mechanism of PPRV. The aim of this review is to provide theoretical support for the development of PPRV inhibitors and the prevention and control of PPR.
期刊介绍:
Veterinary Medicine and Science is the peer-reviewed journal for rapid dissemination of research in all areas of veterinary medicine and science. The journal aims to serve the research community by providing a vehicle for authors wishing to publish interesting and high quality work in both fundamental and clinical veterinary medicine and science.
Veterinary Medicine and Science publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.
We aim to be a truly global forum for high-quality research in veterinary medicine and science, and believe that the best research should be published and made widely accessible as quickly as possible. Veterinary Medicine and Science publishes papers submitted directly to the journal and those referred from a select group of prestigious journals published by Wiley-Blackwell.
Veterinary Medicine and Science is a Wiley Open Access journal, one of a new series of peer-reviewed titles publishing quality research with speed and efficiency. For further information visit the Wiley Open Access website.