Sustainable fabrication of Fe2O3/C nanoparticles via acacia nilotica extract for enhanced supercapacitor performance.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nazish Parveen Parveen, Enshirah Da'na, Amel Taha
{"title":"Sustainable fabrication of Fe2O3/C nanoparticles via acacia nilotica extract for enhanced supercapacitor performance.","authors":"Nazish Parveen Parveen, Enshirah Da'na, Amel Taha","doi":"10.1088/1361-6528/ada44a","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1and FeC-2 NPs, using seedless pods of Acacia nilotica. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations of Acacia nilotica extract (ANE) on the electrochemical characteristics of the resulting n FeC-1and FeC-2 electrodes. Both FeC-1and FeC-2 NPs were tested extensively using cyclic voltammetry and galvanostatic charge-discharge methods to evaluate their pseudocapacitive properties in a three-electrode setup. The FeC-2 electrodes showed much better performance, achieving a specific capacitance of 482.85 F/g, compared to FeC-1's 155.71 F/g. This enhanced capacity is attributed to an optimal content that notably boosts conductivity. Additionally, FeC-2 showed impressive cyclic stability, retaining approximately 80% capacity at a constant current density. These findings underscore the potential of using ANE for developing cost-effective and environmentally benign FeC-1 and FeC-2 NPs with promising applications in high-performance supercapacitors.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada44a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1and FeC-2 NPs, using seedless pods of Acacia nilotica. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations of Acacia nilotica extract (ANE) on the electrochemical characteristics of the resulting n FeC-1and FeC-2 electrodes. Both FeC-1and FeC-2 NPs were tested extensively using cyclic voltammetry and galvanostatic charge-discharge methods to evaluate their pseudocapacitive properties in a three-electrode setup. The FeC-2 electrodes showed much better performance, achieving a specific capacitance of 482.85 F/g, compared to FeC-1's 155.71 F/g. This enhanced capacity is attributed to an optimal content that notably boosts conductivity. Additionally, FeC-2 showed impressive cyclic stability, retaining approximately 80% capacity at a constant current density. These findings underscore the potential of using ANE for developing cost-effective and environmentally benign FeC-1 and FeC-2 NPs with promising applications in high-performance supercapacitors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信