Chao Wang, Bo Song, Xin Zhai, Che Zhang, Mengyang Du, Yanqin Miao, Peng Dong
{"title":"Cross-alignment of silver nanowires network for efficient nanowelding.","authors":"Chao Wang, Bo Song, Xin Zhai, Che Zhang, Mengyang Du, Yanqin Miao, Peng Dong","doi":"10.1088/1361-6528/ada449","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of sliver nanowire (AgNWs) network flexible transparent electrodes is limited by large contact resistance, making it necessary to perform nanowelding to improve conductivity of the network. However, not all nanowire junctions can be welded. Our work indicates that the welding kinetics between nanowires depend on the crossing angle, with higher surface diffusion velocity prone to welding and fracture at nanowire junctions of crossing angles close to 90 degrees. The impact of nanowire crossing angles on the welding process makes it difficult to achieve simultaneous welding of random AgNWs networks. To address this issue, we adopted an improved Meyer rod coating method to prepared a cross-aligned nanowire network based on a layer-by-layer assembly strategy. Compared to randomly distributed AgNWs networks (11.17Ω/sq, 85.2%), the cross-aligned AgNWs network achieved simultaneous welding of nanowire junctions during thermal annealing, further enhancing the optoelectronic performance (10.8Ω/sq, 90.3%) of the AgNWs network, resulting in a superior figure of merit (FoM) value of 421.
.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada449","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of sliver nanowire (AgNWs) network flexible transparent electrodes is limited by large contact resistance, making it necessary to perform nanowelding to improve conductivity of the network. However, not all nanowire junctions can be welded. Our work indicates that the welding kinetics between nanowires depend on the crossing angle, with higher surface diffusion velocity prone to welding and fracture at nanowire junctions of crossing angles close to 90 degrees. The impact of nanowire crossing angles on the welding process makes it difficult to achieve simultaneous welding of random AgNWs networks. To address this issue, we adopted an improved Meyer rod coating method to prepared a cross-aligned nanowire network based on a layer-by-layer assembly strategy. Compared to randomly distributed AgNWs networks (11.17Ω/sq, 85.2%), the cross-aligned AgNWs network achieved simultaneous welding of nanowire junctions during thermal annealing, further enhancing the optoelectronic performance (10.8Ω/sq, 90.3%) of the AgNWs network, resulting in a superior figure of merit (FoM) value of 421.
.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.