Trace amine-associated receptor 1 (TAAR1): an emerging therapeutic target for neurodegenerative, neurodevelopmental, and neurotraumatic disorders.

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Saher Dalvi, Lokesh Kumar Bhatt
{"title":"Trace amine-associated receptor 1 (TAAR1): an emerging therapeutic target for neurodegenerative, neurodevelopmental, and neurotraumatic disorders.","authors":"Saher Dalvi, Lokesh Kumar Bhatt","doi":"10.1007/s00210-024-03757-6","DOIUrl":null,"url":null,"abstract":"<p><p>Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities. Their receptors are G protein-coupled receptors present in both the CNS and peripheral locations, with trace amine-associated receptor 1 (TAAR1) being the most researched. TAAR1's capacity to regulate glutamatergic and monoaminergic neurotransmission has made it a viable therapeutic target for neuropsychiatric illnesses. Although the TAAR1 role in schizophrenia and other neuropsychiatric disorders is well established, its role in the pathology of neurodegenerative and neurotraumatic disorders recently got attention. This review discusses the role of TAAR1 in neurodegenerative, neurodevelopment, and neurotraumatic disorders and explores its potential to be a novel therapeutic target in these disorders.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03757-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities. Their receptors are G protein-coupled receptors present in both the CNS and peripheral locations, with trace amine-associated receptor 1 (TAAR1) being the most researched. TAAR1's capacity to regulate glutamatergic and monoaminergic neurotransmission has made it a viable therapeutic target for neuropsychiatric illnesses. Although the TAAR1 role in schizophrenia and other neuropsychiatric disorders is well established, its role in the pathology of neurodegenerative and neurotraumatic disorders recently got attention. This review discusses the role of TAAR1 in neurodegenerative, neurodevelopment, and neurotraumatic disorders and explores its potential to be a novel therapeutic target in these disorders.

微量胺相关受体1 (TAAR1):神经退行性、神经发育和神经创伤性疾病的新治疗靶点
微量胺是存在于所有生物体内的具有生理活性的胺。它们在结构上与传统的单胺相同,并能被单胺氧化酶迅速代谢。哺乳动物的神经系统产生这些分子的速度相当于传统的单胺,但由于它们的半衰期很短,只能观察到微量。它们的受体是G蛋白偶联受体,存在于中枢神经系统和外周位置,其中痕量胺相关受体1 (TAAR1)研究最多。TAAR1调节谷氨酸能和单胺能神经传递的能力使其成为神经精神疾病的可行治疗靶点。虽然TAAR1在精神分裂症和其他神经精神疾病中的作用已经得到了证实,但它在神经退行性和神经创伤性疾病中的病理作用最近得到了关注。本文讨论了TAAR1在神经退行性、神经发育和神经创伤性疾病中的作用,并探讨了其作为这些疾病的新治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信