{"title":"Trace amine-associated receptor 1 (TAAR1): an emerging therapeutic target for neurodegenerative, neurodevelopmental, and neurotraumatic disorders.","authors":"Saher Dalvi, Lokesh Kumar Bhatt","doi":"10.1007/s00210-024-03757-6","DOIUrl":null,"url":null,"abstract":"<p><p>Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities. Their receptors are G protein-coupled receptors present in both the CNS and peripheral locations, with trace amine-associated receptor 1 (TAAR1) being the most researched. TAAR1's capacity to regulate glutamatergic and monoaminergic neurotransmission has made it a viable therapeutic target for neuropsychiatric illnesses. Although the TAAR1 role in schizophrenia and other neuropsychiatric disorders is well established, its role in the pathology of neurodegenerative and neurotraumatic disorders recently got attention. This review discusses the role of TAAR1 in neurodegenerative, neurodevelopment, and neurotraumatic disorders and explores its potential to be a novel therapeutic target in these disorders.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03757-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities. Their receptors are G protein-coupled receptors present in both the CNS and peripheral locations, with trace amine-associated receptor 1 (TAAR1) being the most researched. TAAR1's capacity to regulate glutamatergic and monoaminergic neurotransmission has made it a viable therapeutic target for neuropsychiatric illnesses. Although the TAAR1 role in schizophrenia and other neuropsychiatric disorders is well established, its role in the pathology of neurodegenerative and neurotraumatic disorders recently got attention. This review discusses the role of TAAR1 in neurodegenerative, neurodevelopment, and neurotraumatic disorders and explores its potential to be a novel therapeutic target in these disorders.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.