Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Female Rats Exposed to Aroclor 1221 and Vinclozolin.

IF 10.1 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Environmental Health Perspectives Pub Date : 2024-12-01 Epub Date: 2024-12-31 DOI:10.1289/EHP15621
Emily N Hilz, Ross Gillette, Lindsay M Thompson, Lexi Ton, Timothy Pham, M Nicole Kunkel, David Crews, Andrea C Gore
{"title":"Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Female Rats Exposed to Aroclor 1221 and Vinclozolin.","authors":"Emily N Hilz, Ross Gillette, Lindsay M Thompson, Lexi Ton, Timothy Pham, M Nicole Kunkel, David Crews, Andrea C Gore","doi":"10.1289/EHP15621","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations.</p><p><strong>Objectives: </strong>We assessed consequences of both direct and ancestral exposure to EDCs over six generations, examining anxiety-like behaviors in maternal and paternal lines of female rats. We used the \"two hits, three generations apart\" multigenerational exposure model to explore how two distinct EDCs-the weakly estrogenic PCB mixture Aroclor 1221 (A1221) and the antiandrogenic VIN-interact on behavior across generations. We also explored serum hormones as a potential mechanism.</p><p><strong>Methods: </strong>Rats were prenatally exposed to A1221, VIN, or vehicle (DMSO) in the F1 generation, and a second exposure (same or different) was administered to the F4 generation. Anxiety-like behavior was measured in the Open Field test, Light:Dark box, and Elevated Plus Maze in the F1, F3, F4, and F6 generations. Serum concentrations of estradiol and corticosterone were analyzed.</p><p><strong>Results: </strong>Behavioral effects were not detectable in the F1 generation but emerged and became more robust across generations. Rats with ancestral VIN exposure demonstrated less anxiety-like behavior in the F3 paternal line in comparison with controls. Rats exposed to ancestral then prenatal A1221/VIN and VIN/A1221 had more anxiety-like behavior in the F4 maternal line, and those with two ancestral hits of VIN/VIN had more anxiety in the F6 paternal line, in comparison with controls.</p><p><strong>Discussion: </strong>Our findings suggest that anxiety-like behavioral phenotypes can manifest in rats following germline exposure to EDCs and that subsequent exposures across generations can intensify these effects in a lineage-dependent manner. https://doi.org/10.1289/EHP15621.</p>","PeriodicalId":11862,"journal":{"name":"Environmental Health Perspectives","volume":"132 12","pages":"127005"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Health Perspectives","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1289/EHP15621","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations.

Objectives: We assessed consequences of both direct and ancestral exposure to EDCs over six generations, examining anxiety-like behaviors in maternal and paternal lines of female rats. We used the "two hits, three generations apart" multigenerational exposure model to explore how two distinct EDCs-the weakly estrogenic PCB mixture Aroclor 1221 (A1221) and the antiandrogenic VIN-interact on behavior across generations. We also explored serum hormones as a potential mechanism.

Methods: Rats were prenatally exposed to A1221, VIN, or vehicle (DMSO) in the F1 generation, and a second exposure (same or different) was administered to the F4 generation. Anxiety-like behavior was measured in the Open Field test, Light:Dark box, and Elevated Plus Maze in the F1, F3, F4, and F6 generations. Serum concentrations of estradiol and corticosterone were analyzed.

Results: Behavioral effects were not detectable in the F1 generation but emerged and became more robust across generations. Rats with ancestral VIN exposure demonstrated less anxiety-like behavior in the F3 paternal line in comparison with controls. Rats exposed to ancestral then prenatal A1221/VIN and VIN/A1221 had more anxiety-like behavior in the F4 maternal line, and those with two ancestral hits of VIN/VIN had more anxiety in the F6 paternal line, in comparison with controls.

Discussion: Our findings suggest that anxiety-like behavioral phenotypes can manifest in rats following germline exposure to EDCs and that subsequent exposures across generations can intensify these effects in a lineage-dependent manner. https://doi.org/10.1289/EHP15621.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Health Perspectives
Environmental Health Perspectives 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
14.40
自引率
2.90%
发文量
388
审稿时长
6 months
期刊介绍: Environmental Health Perspectives (EHP) is a monthly peer-reviewed journal supported by the National Institute of Environmental Health Sciences, part of the National Institutes of Health under the U.S. Department of Health and Human Services. Its mission is to facilitate discussions on the connections between the environment and human health by publishing top-notch research and news. EHP ranks third in Public, Environmental, and Occupational Health, fourth in Toxicology, and fifth in Environmental Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信