{"title":"Mettl14 and Mettl3 Work Cooperatively to Regulate Retinal Development.","authors":"Dan Chen, Yanling Xin, Jingyi Guo, Shuyi Chen","doi":"10.1002/cbf.70039","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>6</sup>-methylenadenosine (m<sup>6</sup>A) modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs, has been shown to play crucial roles in regulating various aspects of mRNA metabolism and functions. In this study, we applied the Cre-Loxp conditional knockout system to investigate the role of the core components of the m<sup>6</sup>A methyltransferase complex, METTL14 and METTL3, in retinal development. Our results showed that the double absence of Mettl14 and Mettl3 caused structural disturbance in the retina and prolonged the proliferation activity of retinal progenitor cells. Interestingly, the deletion of Mettl14 and Mettl3 did not affect the generation of various retinal cells, but severely disrupted their distribution. In addition, double deletion of Mettl14 together with Mettl3 caused a stronger phenotype than did single deletion of Mettl14. In conclusion, our study demonstrated that Mettl14 and Mettl3 work cooperatively to regulate retinal development.</p>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 1","pages":"e70039"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbf.70039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methylenadenosine (m6A) modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs, has been shown to play crucial roles in regulating various aspects of mRNA metabolism and functions. In this study, we applied the Cre-Loxp conditional knockout system to investigate the role of the core components of the m6A methyltransferase complex, METTL14 and METTL3, in retinal development. Our results showed that the double absence of Mettl14 and Mettl3 caused structural disturbance in the retina and prolonged the proliferation activity of retinal progenitor cells. Interestingly, the deletion of Mettl14 and Mettl3 did not affect the generation of various retinal cells, but severely disrupted their distribution. In addition, double deletion of Mettl14 together with Mettl3 caused a stronger phenotype than did single deletion of Mettl14. In conclusion, our study demonstrated that Mettl14 and Mettl3 work cooperatively to regulate retinal development.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.