Pei Hu, Pan Chen, Gengyu Zhou, Jingyu Hu, Surong Chen, Yingjie Li, Yan Yang, Jingzhi Ma
{"title":"Constructing two bifunctional tooth-targeting antimicrobial peptides for caries management: an in vitro study.","authors":"Pei Hu, Pan Chen, Gengyu Zhou, Jingyu Hu, Surong Chen, Yingjie Li, Yan Yang, Jingzhi Ma","doi":"10.1007/s00784-024-06139-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management.</p><p><strong>Materials and methods: </strong>The minimal inhibitory concentration (MIC<sub>100</sub>) and minimal biofilm inhibitory concentration (MBIC<sub>100</sub>) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining. The affinities of the peptides for HA were measured by mass depletion, and the abilities of peptides to inhibit Streptococcus mutans (S. mutans) biofilm formation and kill 3-day-old S. mutans biofilms were evaluated in HA disk and tooth slice biofilm models through confocal laser scanning microscopy. Biocompatibility with human gingival fibroblasts was evaluated via CCK8 assays.</p><p><strong>Results: </strong>The best performing peptides, DJK-5@SVA and SVA@DJK-5 exhibited MIC<sub>100</sub> and MBIC<sub>100</sub> values of 31.25 µg/mL, similar to DJK-5. DJK-5@linker2@YSL had the highest affinity for HA, followed by YSL@DJK-5, DJK-5@linker1@YSL, and DJK-5@SVA. Moreover, the biofilms on HABPs@DJK-5 coated surfaces had more dead bacteria by volume than those in the DJK-5 and SVA groups (p < 0.05). DJK-5@SVA outperformed SVA@DJK-5 and DJK-5 in killing 3-day-old S. mutans biofilms (p < 0.05). With the exception of established biofilms on tooth slices, DJK-5@SVA exhibited greater killing efficiency in the bottom half of the biofilms than in the top half. The CCK-8 assay results confirmed peptides' biocompatibility.</p><p><strong>Conclusions: </strong>DJK-5@SVA with good affinity for HA, has excellent biocompatibility and efficacy against S. mutans biofilms.</p><p><strong>Clinical relevance: </strong>HABPs@AMPs with effective inhibitory effects on the growth of S. mutans and biofilm formation, contributing to intraoral targeted application AMPs and providing a new strategy for caries management.</p>","PeriodicalId":10461,"journal":{"name":"Clinical Oral Investigations","volume":"29 1","pages":"36"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00784-024-06139-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management.
Materials and methods: The minimal inhibitory concentration (MIC100) and minimal biofilm inhibitory concentration (MBIC100) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining. The affinities of the peptides for HA were measured by mass depletion, and the abilities of peptides to inhibit Streptococcus mutans (S. mutans) biofilm formation and kill 3-day-old S. mutans biofilms were evaluated in HA disk and tooth slice biofilm models through confocal laser scanning microscopy. Biocompatibility with human gingival fibroblasts was evaluated via CCK8 assays.
Results: The best performing peptides, DJK-5@SVA and SVA@DJK-5 exhibited MIC100 and MBIC100 values of 31.25 µg/mL, similar to DJK-5. DJK-5@linker2@YSL had the highest affinity for HA, followed by YSL@DJK-5, DJK-5@linker1@YSL, and DJK-5@SVA. Moreover, the biofilms on HABPs@DJK-5 coated surfaces had more dead bacteria by volume than those in the DJK-5 and SVA groups (p < 0.05). DJK-5@SVA outperformed SVA@DJK-5 and DJK-5 in killing 3-day-old S. mutans biofilms (p < 0.05). With the exception of established biofilms on tooth slices, DJK-5@SVA exhibited greater killing efficiency in the bottom half of the biofilms than in the top half. The CCK-8 assay results confirmed peptides' biocompatibility.
Conclusions: DJK-5@SVA with good affinity for HA, has excellent biocompatibility and efficacy against S. mutans biofilms.
Clinical relevance: HABPs@AMPs with effective inhibitory effects on the growth of S. mutans and biofilm formation, contributing to intraoral targeted application AMPs and providing a new strategy for caries management.
期刊介绍:
The journal Clinical Oral Investigations is a multidisciplinary, international forum for publication of research from all fields of oral medicine. The journal publishes original scientific articles and invited reviews which provide up-to-date results of basic and clinical studies in oral and maxillofacial science and medicine. The aim is to clarify the relevance of new results to modern practice, for an international readership. Coverage includes maxillofacial and oral surgery, prosthetics and restorative dentistry, operative dentistry, endodontics, periodontology, orthodontics, dental materials science, clinical trials, epidemiology, pedodontics, oral implant, preventive dentistiry, oral pathology, oral basic sciences and more.