miRNAome-metabolome wide association study reveals effects of miRNA regulation in eosinophilia and airflow obstruction in childhood asthma.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Rinku Sharma, Kevin Mendez, Sofina Begum, Su Chu, Nicole Prince, Julian Hecker, Rachel S Kelly, Qingwen Chen, Craig E Wheelock, Juan C Celedón, Clary Clish, Robert Gertszen, Kelan G Tantisira, Scott T Weiss, Jessica Lasky-Su, Michael McGeachie
{"title":"miRNAome-metabolome wide association study reveals effects of miRNA regulation in eosinophilia and airflow obstruction in childhood asthma.","authors":"Rinku Sharma, Kevin Mendez, Sofina Begum, Su Chu, Nicole Prince, Julian Hecker, Rachel S Kelly, Qingwen Chen, Craig E Wheelock, Juan C Celedón, Clary Clish, Robert Gertszen, Kelan G Tantisira, Scott T Weiss, Jessica Lasky-Su, Michael McGeachie","doi":"10.1016/j.ebiom.2024.105534","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma.</p><p><strong>Methods: </strong>We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (N<sub>Baseline</sub> = 312 and N<sub>End of trial</sub> = 454). We conducted a meta-analysis of the two cohorts to identify common contemporaneous associations between CAMP and GACRS (false-discovery rate (FDR) = 0.05). We assessed persistent miRNA-metabolome associations using baseline miRNAs and metabolomic profiling in CAMP at the end of the trial. The relation between miRNAs, metabolites and clinical phenotypes, including airway hyper-responsiveness (AHR), peripheral blood eosinophilia, and airflow obstruction, were then assessed via. Mediation analysis with 1000 bootstraps at an FDR significance level of 0.05.</p><p><strong>Findings: </strong>The meta-analysis yielded a total of 369 significant contemporaneous associations, involving 133 miRNAs and 60 metabolites. We identified 13 central hub metabolites (taurine, 12,13-diHOME, sebacate, 9-cis-retinoic acid, azelate, asparagine, C5:1 carnitine, cortisol, 3-methyladipate, inosine, NMMA, glycine, and Pyroglutamic acid) and four hub miRNAs (hsa-miR-186-5p, hsa-miR-143-3p, hsa-miR-192-5p, and hsa-miR-223-3p). Nine of these associations, between eight miRNAs and eight metabolites, were persistent in CAMP from baseline to the end of trial. Finally, five central hub metabolites (9-cis-retinoic acid, taurine, sebacate, azelate, and 12,13-diHOME) were identified as primary mediators in over 100 significant indirect miRNA-metabolite associations, with a collective influence on peripheral blood eosinophilia, AHR, and airflow obstruction.</p><p><strong>Interpretation: </strong>The robust association between miRNAs and metabolites, along with the substantial indirect impact of miRNAs via 5 hub metabolites on multiple clinical asthma metrics, suggests important integrated effects of miRNAs and metabolites on asthma. These findings imply that the indirect regulation of metabolism and cellular functions by miRNA influences Th2 inflammation, AHR, and airflow obstruction in childhood asthma.</p><p><strong>Funding: </strong>Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"112 ","pages":"105534"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105534","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma.

Methods: We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (NBaseline = 312 and NEnd of trial = 454). We conducted a meta-analysis of the two cohorts to identify common contemporaneous associations between CAMP and GACRS (false-discovery rate (FDR) = 0.05). We assessed persistent miRNA-metabolome associations using baseline miRNAs and metabolomic profiling in CAMP at the end of the trial. The relation between miRNAs, metabolites and clinical phenotypes, including airway hyper-responsiveness (AHR), peripheral blood eosinophilia, and airflow obstruction, were then assessed via. Mediation analysis with 1000 bootstraps at an FDR significance level of 0.05.

Findings: The meta-analysis yielded a total of 369 significant contemporaneous associations, involving 133 miRNAs and 60 metabolites. We identified 13 central hub metabolites (taurine, 12,13-diHOME, sebacate, 9-cis-retinoic acid, azelate, asparagine, C5:1 carnitine, cortisol, 3-methyladipate, inosine, NMMA, glycine, and Pyroglutamic acid) and four hub miRNAs (hsa-miR-186-5p, hsa-miR-143-3p, hsa-miR-192-5p, and hsa-miR-223-3p). Nine of these associations, between eight miRNAs and eight metabolites, were persistent in CAMP from baseline to the end of trial. Finally, five central hub metabolites (9-cis-retinoic acid, taurine, sebacate, azelate, and 12,13-diHOME) were identified as primary mediators in over 100 significant indirect miRNA-metabolite associations, with a collective influence on peripheral blood eosinophilia, AHR, and airflow obstruction.

Interpretation: The robust association between miRNAs and metabolites, along with the substantial indirect impact of miRNAs via 5 hub metabolites on multiple clinical asthma metrics, suggests important integrated effects of miRNAs and metabolites on asthma. These findings imply that the indirect regulation of metabolism and cellular functions by miRNA influences Th2 inflammation, AHR, and airflow obstruction in childhood asthma.

Funding: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).

求助全文
约1分钟内获得全文 求助全文
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信