{"title":"FGFR3 Upregulates Interferon-Stimulated Genes Via the JAK1-STAT1 Signaling Pathway in HPV2 E2 Stable Expressing Keratinocytes.","authors":"Qingqing Guo, Xuanjin Wei, Jiayue Qi, Chengxin Li, Fang Xie","doi":"10.1002/jmv.70147","DOIUrl":null,"url":null,"abstract":"<p><p>Human papillomavirus (HPV) infections are prevalent skin infectious diseases. While there are no specific anti-HPV drugs available, understanding the viral mechanisms could lead to novel therapeutic strategies. Verruca vulgaris, a common HPV infection, is frequently encountered in dermatological clinics. The HPV E2 protein, an early viral protein, has been implicated in high-risk HPV infections by interacting with fibroblast growth factor receptor 3 (FGFR3) to inhibit viral DNA replication. However, the role of HPV E2 and FGFR3 in low-risk HPV infections remains elusive. Our study takes HPV2, a common subtype of verruca vulgaris, to explore the proliferation and immune regulatory effects of HPV2 E2 on keratinocytes. By overexpressing FGFR3 in HPV2 E2 stable expressing keratinocytes, we assessed changes in interferon-stimulated genes (ISGs) level and cell proliferation. Our findings revealed that HPV2 E2 induced phosphorylation of FGFR3 could activate JAK1-STAT1 pathway, thereby enhancing antiviral immunity through the upregulation of ISGs. Furthermore, we observed co-localization and interaction between FGFR3 and HPV2 E2 in keratinocytes. In conclusion, our study underscores the crucial role of FGFR3 in innate antiviral immunity against HPV2 infection in keratinocytes. These findings may provide a potential therapeutic target for HPV infections.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 1","pages":"e70147"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmv.70147","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human papillomavirus (HPV) infections are prevalent skin infectious diseases. While there are no specific anti-HPV drugs available, understanding the viral mechanisms could lead to novel therapeutic strategies. Verruca vulgaris, a common HPV infection, is frequently encountered in dermatological clinics. The HPV E2 protein, an early viral protein, has been implicated in high-risk HPV infections by interacting with fibroblast growth factor receptor 3 (FGFR3) to inhibit viral DNA replication. However, the role of HPV E2 and FGFR3 in low-risk HPV infections remains elusive. Our study takes HPV2, a common subtype of verruca vulgaris, to explore the proliferation and immune regulatory effects of HPV2 E2 on keratinocytes. By overexpressing FGFR3 in HPV2 E2 stable expressing keratinocytes, we assessed changes in interferon-stimulated genes (ISGs) level and cell proliferation. Our findings revealed that HPV2 E2 induced phosphorylation of FGFR3 could activate JAK1-STAT1 pathway, thereby enhancing antiviral immunity through the upregulation of ISGs. Furthermore, we observed co-localization and interaction between FGFR3 and HPV2 E2 in keratinocytes. In conclusion, our study underscores the crucial role of FGFR3 in innate antiviral immunity against HPV2 infection in keratinocytes. These findings may provide a potential therapeutic target for HPV infections.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.