Bovine bone-based activated carbon composite containing nanomagnetite as a catalyst for photo-Fenton reactions.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Thays de Oliveira Guidolin, Mariana Borges Polla, Adriane de Assis Lawisch Rodriguez, Tiago Bender Wermuth, Sarah Eller, Tiago Franco de Oliveira, Fabiano Raupp Pereira, Alexandre da Cas Viegas, Oscar Rubem Klegues Montedo, Maria Alice Prado Cechinel, Sabrina Arcaro
{"title":"Bovine bone-based activated carbon composite containing nanomagnetite as a catalyst for photo-Fenton reactions.","authors":"Thays de Oliveira Guidolin, Mariana Borges Polla, Adriane de Assis Lawisch Rodriguez, Tiago Bender Wermuth, Sarah Eller, Tiago Franco de Oliveira, Fabiano Raupp Pereira, Alexandre da Cas Viegas, Oscar Rubem Klegues Montedo, Maria Alice Prado Cechinel, Sabrina Arcaro","doi":"10.1007/s11356-024-35867-2","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic composites (MC) prepared from magnetite nanoparticles (MNP) and activated carbon from bovine bone (AC) in different proportions (75/25, 50/50, and 25/75) were used as catalysts in the photo-Fenton process to degrade methylene blue (MB) in aqueous solution. The materials were prepared by the citrate-nitrate sol-gel synthesis method and used as catalysts in the photo-Fenton process. The photocatalytic tests were performed in a cylindrical reactor with a 4.13-cm internal diameter and 300-mL maximum capacity, equipped with 9.9-W visible light lamps. The specific surface area of the MC increased by up to 1138.39% with the addition of AC. Morphological analysis confirmed the anchoring of MNPs on the AC surface. The band gap values of the materials ranged from 1.16 to 1.55 eV and increased proportionally with the addition of AC to the MC compositions. MC-75/25 and MC-50/50 presented predominantly superparamagnetic behavior, while for MC-25/75 superparamagnetic and superimposed paramagnetic phases were observed. All samples showed good reduction of the MB concentration, exceeding 80% after 10 cycles of use. The mineralization advanced extensively to simple organic acids, proving the non-generation of harmful by-products and the efficiency of this photocatalytic system. The use of magnetic composites favored the efficient separation of the catalyst without causing secondary pollution, in addition to increasing the stability and reusability of the catalysts.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35867-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic composites (MC) prepared from magnetite nanoparticles (MNP) and activated carbon from bovine bone (AC) in different proportions (75/25, 50/50, and 25/75) were used as catalysts in the photo-Fenton process to degrade methylene blue (MB) in aqueous solution. The materials were prepared by the citrate-nitrate sol-gel synthesis method and used as catalysts in the photo-Fenton process. The photocatalytic tests were performed in a cylindrical reactor with a 4.13-cm internal diameter and 300-mL maximum capacity, equipped with 9.9-W visible light lamps. The specific surface area of the MC increased by up to 1138.39% with the addition of AC. Morphological analysis confirmed the anchoring of MNPs on the AC surface. The band gap values of the materials ranged from 1.16 to 1.55 eV and increased proportionally with the addition of AC to the MC compositions. MC-75/25 and MC-50/50 presented predominantly superparamagnetic behavior, while for MC-25/75 superparamagnetic and superimposed paramagnetic phases were observed. All samples showed good reduction of the MB concentration, exceeding 80% after 10 cycles of use. The mineralization advanced extensively to simple organic acids, proving the non-generation of harmful by-products and the efficiency of this photocatalytic system. The use of magnetic composites favored the efficient separation of the catalyst without causing secondary pollution, in addition to increasing the stability and reusability of the catalysts.

含纳米磁铁矿的牛骨基活性炭复合材料作为光-芬顿反应的催化剂。
采用不同比例(75/25、50/50、25/75)的磁性纳米颗粒(MNP)与牛骨活性炭(AC)制备磁性复合材料(MC),作为光- fenton法降解水溶液中的亚甲基蓝(MB)的催化剂。采用柠檬酸盐-硝酸盐溶胶-凝胶法合成了该材料,并将其用作光- fenton法的催化剂。光催化试验在内径4.13 cm、最大容量300 ml的圆柱形反应器中进行,配备9.9 w可见光灯。添加AC后,MC的比表面积增加了1138.39%,形态学分析证实了MNPs在AC表面的锚定作用。材料的带隙值在1.16 ~ 1.55 eV之间,随着MC成分中AC的加入而成比例地增大。MC-75/25和MC-50/50以超顺磁为主,MC-25/75以超顺磁相和叠加顺磁相为主。所有样品均表现出良好的MB浓度降低,10次循环后超过80%。矿化广泛发展到简单有机酸,证明了该光催化系统不产生有害副产物和效率。磁性复合材料的使用有利于催化剂的高效分离而不造成二次污染,并且提高了催化剂的稳定性和可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信