{"title":"Preparation, characterization, and antibacterial and antioxidant activities of caffeic acid grafted ε-polylysine.","authors":"Junhui Zhu, Zhiying Lei, Yali Tang, Lixin Lu, Xiaolin Qiu, Liao Pan","doi":"10.1016/j.ijbiomac.2024.139276","DOIUrl":null,"url":null,"abstract":"<p><p>The antioxidant activity of ε-polylysine (EPL) can be enhanced by grafting phenolic compound caffeic acid (CA) onto its amino groups. To enhance the antioxidant activity of EPL, this study synthesized caffeic acid-ε-polylysine conjugate (CA-EPL) by grafting CA onto EPL using carbodiimide coupling reaction. Fourier transform infrared spectroscopy, <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy confirmed the successful conjugation of caffeic acid and ε-polylysine. The ultraviolet-visible absorption spectra, grafting ratio, and Zeta potential data indicate that the molar ratio of CA to EPL has a significant impact on the grafting degree and Zeta potential of the conjugates. In particular, the highest grafting degree and the lowest Zeta potential were obtained when the molar ratio of carboxyl groups in CA to amino groups in EPL was 3:1. Furthermore, the antimicrobial and antioxidant activities of the conjugates were evaluated. The results of antimicrobial activity indicate that the conjugate CA-EPL still exhibits excellent antimicrobial properties. The results of antioxidant activity show a significant increase in the antioxidant activity of the conjugate CA-EPL, which was significantly higher than that of free EPL. In addition, the research results on the antimicrobial mechanism show that CA-EPL has a similar antimicrobial mechanism to EPL: by interacting with the bacterial cell membrane, it disrupts the cell membrane, causing leakage of cell contents, ultimately leading to bacterial death. These results indicate that CA-EPL, as a novel dual-functional active substance, has broad prospects in the food and pharmaceutical industries.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139276"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.139276","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The antioxidant activity of ε-polylysine (EPL) can be enhanced by grafting phenolic compound caffeic acid (CA) onto its amino groups. To enhance the antioxidant activity of EPL, this study synthesized caffeic acid-ε-polylysine conjugate (CA-EPL) by grafting CA onto EPL using carbodiimide coupling reaction. Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy confirmed the successful conjugation of caffeic acid and ε-polylysine. The ultraviolet-visible absorption spectra, grafting ratio, and Zeta potential data indicate that the molar ratio of CA to EPL has a significant impact on the grafting degree and Zeta potential of the conjugates. In particular, the highest grafting degree and the lowest Zeta potential were obtained when the molar ratio of carboxyl groups in CA to amino groups in EPL was 3:1. Furthermore, the antimicrobial and antioxidant activities of the conjugates were evaluated. The results of antimicrobial activity indicate that the conjugate CA-EPL still exhibits excellent antimicrobial properties. The results of antioxidant activity show a significant increase in the antioxidant activity of the conjugate CA-EPL, which was significantly higher than that of free EPL. In addition, the research results on the antimicrobial mechanism show that CA-EPL has a similar antimicrobial mechanism to EPL: by interacting with the bacterial cell membrane, it disrupts the cell membrane, causing leakage of cell contents, ultimately leading to bacterial death. These results indicate that CA-EPL, as a novel dual-functional active substance, has broad prospects in the food and pharmaceutical industries.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.