{"title":"XPB: an Extendable Polymer Builder for High-Throughput and High-Quality Generation of Complex Polymer Structures.","authors":"Yuheng Chen, Yuwei Zhang, Xin Xu","doi":"10.1021/acs.jctc.4c01265","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient generation of complex initial structures for polymers remains a critical challenge in the field of molecular simulation. This necessitates the development of high-quality and highly efficient modeling algorithms. Inspired by fundamental polymerization reactions, we propose a general algorithm for an efficient de novo polymer model building, resulting in the development of the eXtendable Polymer Builder (XPB) package. We show that XPB is well-suited for constructing a wide range of polymer models, including linear, dendritic, and cross-linked structures. It offers a precise control over polymer morphology through adjustable, physically meaningful parameters such as residue types, connection preferences, and cross-linking distances. As a showcase, XPB can construct well-defined dendrimers up to the 10th generation and hyperbranched polymers with tens of thousands of residues within mere minutes, while effectively minimizing structural overlaps. This versatility facilitates the construction of more complex polymer architectures than before, providing a general and robust framework for the high-throughput and high-quality generation of diverse polymer structures.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"347-357"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01265","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient generation of complex initial structures for polymers remains a critical challenge in the field of molecular simulation. This necessitates the development of high-quality and highly efficient modeling algorithms. Inspired by fundamental polymerization reactions, we propose a general algorithm for an efficient de novo polymer model building, resulting in the development of the eXtendable Polymer Builder (XPB) package. We show that XPB is well-suited for constructing a wide range of polymer models, including linear, dendritic, and cross-linked structures. It offers a precise control over polymer morphology through adjustable, physically meaningful parameters such as residue types, connection preferences, and cross-linking distances. As a showcase, XPB can construct well-defined dendrimers up to the 10th generation and hyperbranched polymers with tens of thousands of residues within mere minutes, while effectively minimizing structural overlaps. This versatility facilitates the construction of more complex polymer architectures than before, providing a general and robust framework for the high-throughput and high-quality generation of diverse polymer structures.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.