{"title":"A Doped Surface Ionization Method for Ion Mobility Spectrometry","authors":"Jianhua Lin, Xiaoguang Gao, Jian Jia, Xiuli He","doi":"10.1002/rcm.9974","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Rationale</h3>\n \n <p>Exhaled breath can be used for early warning of disease, with organic nitrogen compounds, including triethylamine (TEA), being linked to various medical conditions. Surface ionization ion mobility spectrometry (SI-IMS) facilitates the direct detection of TEA in exhaled breath. However, the presence of multiple ionization products of TEA poses challenges for both quantitative and qualitative analyses.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A doped surface ionization (DSI) method consisting of surface ionization of dopants and gas-phase reaction of samples was proposed, and TEA was detected when combined with an ion mobility spectrometer. TEA at different concentrations and spiked by human breath was detected to evaluate the method's properties.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>TEA with concentrations from 5.99 to 30.50 ppb and a relative humidity of 80% was detected. The peak intensity of the protonated TEA ions demonstrated a linear correlation with concentration, yielding a fitted correlation coefficient of <i>R</i><sup>2</sup> = 0.94. A standard deviation less than 0.066% was obtained with 10 replicate analyses of 29.92 ppb TEA, and the recovery rate of the sample was 93.57%.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The SI-IMS based on the DSI method has the advantages of excellent selective ionization, high accuracy and sensitivity, and remarkable repeatability for detecting TEA. It is a promising method for detecting specific organic nitrogen compounds in exhaled breath.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9974","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale
Exhaled breath can be used for early warning of disease, with organic nitrogen compounds, including triethylamine (TEA), being linked to various medical conditions. Surface ionization ion mobility spectrometry (SI-IMS) facilitates the direct detection of TEA in exhaled breath. However, the presence of multiple ionization products of TEA poses challenges for both quantitative and qualitative analyses.
Methods
A doped surface ionization (DSI) method consisting of surface ionization of dopants and gas-phase reaction of samples was proposed, and TEA was detected when combined with an ion mobility spectrometer. TEA at different concentrations and spiked by human breath was detected to evaluate the method's properties.
Results
TEA with concentrations from 5.99 to 30.50 ppb and a relative humidity of 80% was detected. The peak intensity of the protonated TEA ions demonstrated a linear correlation with concentration, yielding a fitted correlation coefficient of R2 = 0.94. A standard deviation less than 0.066% was obtained with 10 replicate analyses of 29.92 ppb TEA, and the recovery rate of the sample was 93.57%.
Conclusions
The SI-IMS based on the DSI method has the advantages of excellent selective ionization, high accuracy and sensitivity, and remarkable repeatability for detecting TEA. It is a promising method for detecting specific organic nitrogen compounds in exhaled breath.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.