Dongli Liu, Dylan Glubb, Tracy O'Mara, Caroline E Ford
{"title":"The Multi-Kinase Inhibitor GZD824 (Olverembatinib) Shows Pre-Clinical Efficacy in Endometrial Cancer.","authors":"Dongli Liu, Dylan Glubb, Tracy O'Mara, Caroline E Ford","doi":"10.1002/cam4.70531","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Endometrial cancer is one of the few cancers for which mortality is still increasing. A lack of treatment options remains a major challenge, particularly for some subtypes of the disease. GZD824, also known as olverembatinib, is a multi-kinase inhibitor previously investigated in clinical trials for chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia as a BCR-ABL inhibitor. This study aimed to investigate the pre-clinical efficacy of GZD824 for the treatment of EC.</p><p><strong>Methods: </strong>Here, we undertook pre-clinical evaluation of GZD824 in seven endometrial cancer cell lines (HEC-1-A, HEC-1-B, MFE296, RL95-2, Ishikawa, KLE and ARK-1), one normal immortalised endometrium derived cell line (E6E7hTERT) and primary mesothelial and fibroblast cells isolated from normal omentum samples.</p><p><strong>Results: </strong>GZD824 inhibited the proliferation of all endometrial cancer cell lines, which were significantly more sensitive to GZD824 compared to normal cells (p = 0.030). GZD824 significantly inhibited migration in Ishikawa (endometrioid) and ARK1 (serous) endometrial cancer cell lines and significantly inhibited invasion in the ARK1 cells. Whole transcriptome regulation following two doses (0.1 and 1 μM) of GZD824 in Ishikawa and ARK1 cells was investigated via RNA-seq, and key components of enriched pathways were investigated at the translational level. Key pathways altered included ROR1/Wnt, GCN2-ATF4, epithelial to mesenchymal transition (EMT) and PI3K-AKT.</p><p><strong>Conclusion: </strong>Together, these studies support further investigation of GZD824 as a potential therapeutic agent in endometrial cancer, potentially in combination with immune checkpoint inhibitors.</p>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":"14 1","pages":"e70531"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cam4.70531","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Endometrial cancer is one of the few cancers for which mortality is still increasing. A lack of treatment options remains a major challenge, particularly for some subtypes of the disease. GZD824, also known as olverembatinib, is a multi-kinase inhibitor previously investigated in clinical trials for chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia as a BCR-ABL inhibitor. This study aimed to investigate the pre-clinical efficacy of GZD824 for the treatment of EC.
Methods: Here, we undertook pre-clinical evaluation of GZD824 in seven endometrial cancer cell lines (HEC-1-A, HEC-1-B, MFE296, RL95-2, Ishikawa, KLE and ARK-1), one normal immortalised endometrium derived cell line (E6E7hTERT) and primary mesothelial and fibroblast cells isolated from normal omentum samples.
Results: GZD824 inhibited the proliferation of all endometrial cancer cell lines, which were significantly more sensitive to GZD824 compared to normal cells (p = 0.030). GZD824 significantly inhibited migration in Ishikawa (endometrioid) and ARK1 (serous) endometrial cancer cell lines and significantly inhibited invasion in the ARK1 cells. Whole transcriptome regulation following two doses (0.1 and 1 μM) of GZD824 in Ishikawa and ARK1 cells was investigated via RNA-seq, and key components of enriched pathways were investigated at the translational level. Key pathways altered included ROR1/Wnt, GCN2-ATF4, epithelial to mesenchymal transition (EMT) and PI3K-AKT.
Conclusion: Together, these studies support further investigation of GZD824 as a potential therapeutic agent in endometrial cancer, potentially in combination with immune checkpoint inhibitors.
期刊介绍:
Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas:
Clinical Cancer Research
Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations
Cancer Biology:
Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery.
Cancer Prevention:
Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach.
Bioinformatics:
Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers.
Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.