Stephen Oyedeji, Nikita Patel, Ramar Krishnamurthy, Paul Ojo Fatoba
{"title":"Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.","authors":"Stephen Oyedeji, Nikita Patel, Ramar Krishnamurthy, Paul Ojo Fatoba","doi":"10.1007/10_2024_274","DOIUrl":null,"url":null,"abstract":"<p><p>The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2024_274","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.
期刊介绍:
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.